- Best
Available
Copy

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A016 785

A PROCESS ELABORATION FORMALISM FOR WRITING
AND ANALYZING PROGRAMS

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR
DerenSE ADVANCED RESEARCH PROJECTS AGENCY

OcToBer 1975

KEEP UP

Between the time you ordered this report—
which is only one of the hundreds of thou-
sands in the NTIS information collection avail-
able to you—and the time you are reading
this message, several new reporis relevant to
your interests probably have entered the col-
lection.

Subscribe to the Weekly Government
Abstracts series that will bring you sum-
maries of new reports as soon as they are
received by NTIS from tha originators of the
research. The WGA’s are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technological, and sociological interest—
invaluable information for executives and
professionals who must keep up to date.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletiers will give
you thorough and comprehensive coverage
kof government-conducted or sponsored re-

170 DATE

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by originating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn about
technical innovations immediately—and use
them in the most meaningful and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weekly newsletter series will keep you
current. But /earn what you have missed in
the past by ordering a computer NTISearch
of all the research reports in your area of
interest, dating as far back as 1964, if you
wish. Please request NTIS-PR-186/FCN for
more information.

WRITE: Managing Editor
5285 Port Royal Road
Springfield, VA 22161

e

SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SRIM covers almost all Government re-
search reports by subject area and/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our WGA (Weekly Govern-
ment Absticcts) or Government Reports
Announcements and Index categories, or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration, or Environmental
Protection Agency. Other options that will
give you greater selectivity are available on
request.

The cost of SRIM service is only 45¢
Kdomestic (60¢ foreign) for each complete

Keep Up To Date With SRIM

\

microfiched report. Your SRIM service begins
as soon as your order is received and proc-
essed and you wil! receive biweekly ship-
ments thereafter. If you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

Because of contractual arrangements with
several Special Technology Groups, not all
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identifying the excep-
tionally priced reports not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. If you
have specific questions con ‘2rning this serv-
ice, please call (703) 451-1558, or write NTIS,
attention SRIM Product Manager.

Y

This information product distributed

5285 Port Royal Road
Springfield, Virginia 22161

P T,

pi i e 4 mama D)L th i e ol L2 D senl s d Lol s,

Joiio ot L b

by

U.S. DEPARTMENT OF ~OMMERCE

National Technical Information Service

David Wilczynski

ARPA ORDER NO. 2223

ISI RR-75.35

October 1975

o A Process Elaboration Formalism for Writing

ADAO1678.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

US Deparmant of Commerce
Springhield, VA. ;M%)

and Analyzing Programs

"~ ‘i
wid © ‘gﬁ ;
b TR,
e et U R T e
. e

INFORMATION SCHNCES INSTITU TH

W76 Admavaley War [Mavona del Ry /e alifen
ENHUERSITY OF SOl T HERN ¢ ALIFORNEA y e

e

UNCLASSIFIED

SECURITY CLASSIFICAYION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2, GOVYT ACCESSION NO.{ 3. RECIPIENT'S CATALOG NUMBER
ISI/RR-75-35

4 TITLE rand Subtitle) 5. TYPE OF REPORT Y PERIOD COVERED
A Process Elaboration Formalism for Writing and Research ° «
Analyzing Programs G. PERFORMING ORG. REPORT NUMBER

7 AUTWHOR(s) 8. CONTRACT OR GRANT NUMBER(e)
David Wilczynski ‘DAHC 15 72 C 0308

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

ARPA Order #2223
Program Code 3D30 & 3P10

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291

'Y CONTROLLING OFFICE NAME AND ADCRESS 12. REPORT OATE
Defense Advanced Rescarch Piojects Agency October 1975
]400 Wilson BlVd. 13, NUMBER OF PAGES
Arlington, VA 22209 o /7
T4 MONITORING AGENCY NAME & ADORESS(!{ different from Controliing Otfice) | 15. SECURITY CLASS. (of thi® report)
Unclassified
1858, OECL ASSIFICATION/ OOWNGRADING
SCHEOULE

'€ ODISTRIBUTION STATEMENT rof this Report)

This document approved for public release and sale; distribution unlimited.

'7. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, i different from Report)

18. SUPPLEMENTARY NOTES

PRICES SUBJECT TG CHANGE

19. KEY WORDS (Continue on reveree eide ! neceesary and identily by block number)

automatic debugging, automatic programming, execution grophs, production systems,
program intentions

20. ABSTRACT (Continue on reverse eide i1 necesssry and identify by block number)

(OVER)

DD ':2:"73 1473 €oiTioN OF 1 NOV 6515 OBSOLETE UNCLASSIFIED

S/N 0102-014- 6601

o SECURITY CLASSIFICATION OF THIS PAGE (When Datas Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

This research effort presents a formalism for writing programs which explicitly addresses
and highlights some program construction issues. The formalism, a kind of production system,
generates a graph that defines the process under inspection, making explicit both when and
where variable bindings take place. From the standpoint of proper data structuring these extra
dimensions are useful for analyzing a program, particularly with respect to ease of data access,
access ambiguity, proper sequence of bindings, and other related issues. Because the
formalism is a natural one for parsing a protocol of an instance of the process described by the
productions, the system will be able to run in two modes: generation (to produce a hehavior
instance) or parse (determining whether a particular behavior instance could have been
generated from a given program). Both these capabilities are important in debugging programs,
especially those written in an Automatic Programming environment in which the system may be
communicating with a nonprogrammer.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

b

ARPA ORDER NO. 2223

ISI RR-75-35

October 1975

David Wilczynski

A Proce:s Elaboration Formalism for Writing
and Analyzing Programs

INFORMATION SCIENCES INSTITUTE

4676 Adnoralty Way/ Marina del Rey/ Californa 90291
UNIVERSITY OF SOUTHERN CALIFORNIA

(213)822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCIS 72 C 0308 ARPA ORDER
O 2223/1. PROGRAM CODE NO 3D30 AND 3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAl OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSCN CR AGENCY CONNECTED WITH IT

THIL DOCIUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION 1S UNLIMITED

i

TR T S ST o —
e e b B e i b Ep— T

CONTENTS

Abstract v

i —
[—

Problem Statement 1
1.1 Introduction |
1.2 Program Behavior and Expectations 3
: 1.3 Representational Requirements 4
] 1.4 Debugging Execution Flaws 6
E‘ 1.5 Philosophy of Program Understanding 10

2 An Introductory Example 11
1 2.1 Intent of the Example 1
2.2 “'he English Statement 11
2.3 A PLX Program 13
2.4 The Process Graphs 16
25 Stating Expectations in PLX 22
2.6 Summary 24

3 The Production Language - PLX 25
3.1 Production Systems in General 25
3.2 The Programming Environment for PLX 28
3.3 Preliminary Terminology 29
3.4 PLX Primitives 31
35 Formal Description of PLX 33
3.6 Summary 48

4 Access Path Theory 50
4.1 Introduction 50
4.2 Natural Language Access Methods 50
4.3 Accessing Typed Variables in XREP 52
4.4 Relative Addressing 54
45 The Access Path Problem §9
4.6 Computing Access Paths 6l
4.7 The PEG and Other Execution Models 66

5 Intentions and Debugging 648
5.1 In'roduction 68
5.2 Systems for Writing Programs 68
5.3 Program Proving Systems 69
5.4 Automatic Debugging Programs 70
5.5 XREP's Intention String Mechanism 73
5.6 General Error Discussion 75

5.7 Unbound Variables 75

5.8 Wrong Bindings 81

5.9 Recursion and Structure Faults a5

5.10 Preconditions and Postconditions in Recursion 94
B.11 Resolving Pronomial References 97

6 Conclusions and Future Directions 106
6.1 The Production Language 100
6.2 The PEG, Intentions, and Debugging 193

References 106

L e b i s DAY TTEPTT vy L WRE T TL VTR 1 sy Rkd & b o b e e L

A i 4 " PRI FIUSAIR IR

ABSTRACT

i

The primary goal of arn Automatic Programming cystem is to generate programs from some
high-level description of 2 user’s problem. This task may involve a diversity of efforts, rang.ng from
modelling the user to optimizing the final program product. In particular, the choice of a suitable
internal program model will influence the direction and capabilities of an Automatic Progt amming
system; the form of the language will have an impact not only on the ease of the translation tusk, but

on the scope of the program analysis for determining the accuracy of the generated prog-am as
well.

]

A ORI o s ot il il

This research effort presents a system called XREP, which includes a formalism for w:iting
programs that explicitly addresses and highlights some program construction and verification is:ues.
The formalism, a production system, includes facilities for generating an object and referencing i by
specifying its class type and identifying the desired instance by providing some limiting predicate,
the predcminant method used in human communication for referencing objects. XREP's languige
interpreter generates a graph that defines the process under inspection, making explicit both when
and where variable bindings for generated objects take place. From the standpoint of proper da.a
structuring these extra dimensions found in the execution graph are useful for analyzing a prograi:,
particularly with respect to ease of data access, detecting access ambiguity, proper sequence cf
bindings, and other related issues.

Another facet of program writing includes the ability to test the final product in order to
verify that the program’s behavior matches the user’s expectation. XREP accepts an intention string
of observable events, externally supplied by the user, for this purpose. Because the production
language tormalism is natural for a parsing task, the intention string, as a protocol of an instance of
the process described by the productions, can be parsed for acceptability. The system will thus be
able to run in two modes: generation (to produce a behavior instance) or parse (determining whether
a particular behavior inslance could have been generated from a given program).

In order to show the adequacy of the various representations, particularly the production
language, the execution graph, the form of the data variables and objects, and the intention string
mechanisr, specific automatic debugging tecnniques were developed that apply to problems normally
found in human communications, such as improperly stated loop control, ambiguous references, and
data structuring faults. The nature of this debugging effcrt emphasizes some of the problems which

an Automatic Programming translator will face in trying to convert human inputs into a computer
program.

Though this research investigates only one analytical phase of Automatic Programming, ‘he
form of the representations chosen for it has an impact upon the entire effort; the capabilities
displayed in this report are meant as a showcase for those formalisms. Thus, XREP's variables,
as a counierpart to nalural language objects, are shown to have an integrated place within the

N

production language, while their placement within the execution graph promotes powerful and
intuitive accessing mechanisms. The nature of the production language not only makes the execution
praph simple to generate, but also associates them visually, making it easy to relate analyses in the
graph to the language. The Intention siring provides a reasonable, if not formal, way to specify
program expectations, with the production language a perfect vehicle for carrying out the associated
parsing. And, finally, high-level debugging techniques are shown to be possible in a suitably rich
environment.

This is part of a series of reports describing ISI research directed toward reducing significantly
the cost of military software while improving its application and upgrading the general quality of
software. This report covers a significant portion of the author’s USC doctoral dissertation,
completed at ISI.

Vi

G g M b iml i ke ARl g on a3’ -

1. PROBLEM STATEMENT

I.I INTRODUCTION

The concept of a programming environment has added new dimensions to software research.
With the advent of interactive use of corputers a programmer can participate actively in software
design and development. It is no longer realistic to view programming as a process of discrete steps
starting at compositicn, then alternating between submittals and debugging the results. Instead it
becomes a dynamic process with unclear demarcations. Recent programming systems specificaly
designed to operate interactively, the best example of which is INTERLISP [TEITELMAN 74], exemplify
this concept by also taking an active role in the programming process. INTERLISP not only provides
tools to the programmer, but it also "watches" over the process, giving aid when it can by detecting
local errors and providing numerous “smart" ccmmands to hide unnecessary programming details.
Only a limited attempt is made, however, to "understand” the program, a task which falls into a
different area of research called Automatic Programming.

The final gcal of Automatic Programming is to be able to generate computer programs from
natural descriptions of the tasks to be performed. By attempting to take over the entire generation
process, Automatic Programming represents the ultimate extension of the capabilities of the
programming environment. Because of economics and the state of our knowledge, any Automatic
Programming system will fall short of that ideal in the foreseeable future. But progress in producing
more capable and active Automatic Programming systems depends entirely on the ability of the
researchers to understand and model the progiamming process. A useful programming model must
cover a variety of tasks: the host of ways to specify programs, program construction issues,
verification and debugging, and so forth(i). Yet this understanding is possible because the domain is
limited to one of processes, programs, and algorithms. The diversity of this knowledge allows
different aspects of the total problem to be researched separately. The investigation of these
independent areas contributes to the long-range project, while in the short term techniques .re
discovered for extending existing software systems. Thus we can envision interactive Automatic
Programming systems which work together with a novice to produce a program from some process
description. The efforts of this dissertation are directed toward this kind of framework, i.e., a user
using natural language to interact with an Automatic Programming system.,

A system of this kind must have some basic knowledge, including natural language
understanding, awareness of programming concepts like variables, loops, scope, structure, and
debugging capabilities, all of which must be relatable to the human. The need for a progressive

(i) An overview of Automatic Programming can be found in [BALZER 72].

bty L T L . W MRS ULV A S R e S GEETTRE R v e e ey R R L Ty R TR T | PRy —

PROBLEM STATEMENT

dialogue suggests that the form of internal representations should be close to the user’s original in
order to promote a natural basis for communication. Though the present report does not
directly deal with this concept, it is the basis for many implementation decisions. The hypothetical
nature of an Automatic Programming system forces any claims and assumptions to rely on intuition
rather than strict results. Still, as an experimental study in representation, the results are
independent of the Automatic Programming framework.

The system to be presented, called XREP, consists of a language, an interpreter, a monitor, and
a debugger. The interpreter and monitor execute the program while building a representative gragph
which is used by the interpreter to carry out evaluations and by the debugger as a history of the
process. The language, called PLX, is designed to address three issues: (1) the program construction
task faced by Automatic Programming, (2) the methods used in natural language for generating 1.d
addressing objects, and (3) the simplification of the error detection and correction task faced by a
debugger.

Although not designed for any particular Automatic Programming system, XREP will be placed
within a hypothetical framework in order to better focus the rest of the report. Figure 1
displays this system showing the transformation of the original input into a final program.

PROGRAM ANALYSIS
INITIAL TRT’:)NSPLL;IE XREP- COMPILE OUTPUT
INPUT | FIRST PASS STATIC DYNAMIC AND ™ PROGRAM
ANALYSIS OPTIMIZE
TRANSLATION ANALYSS
NATURAL RELATIONAL PLX PLX
LANGUAGE FORM PROGRAM PROGRAM

Figure 1. A hypothetical Automatic Programming system

The original input is given to a first-pass natural language translator which generates some
internal form, say a relational description of that input. The next module massages that description,
fixing whatever it can with its static analysis. Some of its actions might include spelling correction,
reordering procedure parameters, altering colloquialisms, supplying obvious missing information, etc.
. The PLX program, the output from that phase, is then passed to XREP for an execution analysis. The
PLX program then enters a compile and optimize phase resulting in the final product. For the
moment we will assume that intaraction is possible at any stage of the processing.

IR e

B L CHILIE. | U oo g T —

PROBLEM STATEMENT

Within this framework all of the errors detected by XREP’s debugger are English situations
which may cause problems for an Automatic Programming translator. Many of these problems can be
better resolved at execution time, when the dynamic context is available, than within the static
environinent of a translator. XREP has been designed on this principle.

The adequacy of all the internal representations, programming language included, should be
measured by the surcess of the debuzger in having compatible and understendable models of the
problem and its solution. Both models are required to understand a program’s behavior and have
expectations of its results from which its correctness can be tested or verified. Understanding
prlgrams -~ the primary $0¢us of Sutomatic Programiming -+ can occur onty in such an environment,

Generally an experimental system produces some characteristic behavior to support its claims.
However, the proposed debugging methods of XREP are intended to augment the capabilities of an
Automatic Programming system by providing a powerful enough framework in which to address
program construction issues, as well s do debugging. They must therefore be evaluated in this
larger context rather than simply as debugging facilities. Although we have obviously not built a
complete Automalic Programming system as part of this effort, we will attempt later to show
how the features of XREP could facilitate such a system.

1.2 PROGRAM BEHAVIOR AND EXPECTATIONS

Analyzing a program’s behavior involves some expectation of its results, many of which are
independent of any particular task. Halting, avoiding numeric overflow, and addressing proper data
are expectations relevant to all programs, but specific expectations are obviously present as well.
When they can be formally stated, the program construction task can often be automated and proved
correct(ii). Unfortunately, few processes (especially long ones) can be defined so functionally. Yet
informal expectations are used by human programmers to help check out their product. XREP’s
“intention mechanism," which is used to monitor a program’s execution, is informal in the same way,
The mechanism’s function is to help the debugger detect flaws (i.e., deviations from exjected
behavior), not prove correctness. Still, the debugger car extract much information by noting what is
expected and what is produced -- informaticn certain to be useful.

Given this setting for a monitor and debugger, the next section will describe the. struciures
and formalisms on which they work.

(ii) This research will be reviewed in Saction 5.3.

e ima

PROBLEM STATEMENT

L3 REPRESENTATIONAL REQUIREMENTS

The choice of representations in XREP involves two design criteria: structures need to be
robust enough to enable the mogification algorithms to work and they need tc be influenced by the
thought that a user and an Automatic Programming system are considered to Je the front end. The
first criterion is operative, the second vague. Since no front end exists, any claims for
communicability, naturalness, or cioseness to real life can only be ‘ntuitive, though the claims will
héve strength and be backed by examples.

By dealing with existing programs and performing execution analysis on them, XREP must have
a model with enouzh power to describe program executicn, program expectations, and execution
errors or anomalies. At the same time the model must “understand" the programming language
involved and how 1} accoramodates the system and the user. None of these issues can be isolated; it
is their coherent organization which gives XREP the capability to perform intelligently.

XREP responds to four representational issues: data, the process description, execution
behavior, and intention forms. Data refers to the naming and accessing of variables. The process
description is the language for writing programs. Execution behavior is captured by a graph which
depicts the progress of a running program, while the intention forms are used to measure
“correctness" of that progress by monitoring its results. Discussion of the individual issues will
emphasize lsow each influences the others.

Generic Data

The generation and addressing of data is an exarmple of how an Automatic Programming system
can accommodate the user. Typical programming languages have precise models of data. If a
Programmer needs to generate information, he chooses 3 variable name and makes the proper
assignment. Thus, "X = 1" "X « 1", or "(SETQ X 1)" are all valid examples of this action in their
associated languages. This phenomenon is perhaps the best example of the difference between the
formality of programming language and the informality of natural language. People do not say, "Call
this pot X. Fill X with water." Programmers do exactly that. The preciseness of such an assignment
makes all snbsequent references unambiguous. Humans, on the other hand, use anaphoric and
ambiguous refcrences as their primary addressing mechanism. They refer to objects generically
modified by a predicate: "The pot with the water," "The first person,” and so forth. Often the type is
replaced with a pronoun form, such as "The one with." Though these features give language its
fluency, they present severe problems for the understanding of natural language.

In XREP variables are created and referenced descriptively in a manrer similar to English; thus
a translator need not muke the rigid reference assignments to textual input. More importantly,
however, by maintaining more natural constructs, a better framework can be provided in which to
resolve the problems associated with Hexible English references. The issue here is not to argue for
the fluency and ambiguity of English, but merely to recognize that it exists and must be faced by
Automatic Programming. The farther the internal translation from the original, the more difficult the
communication task, Chapter 5 will amplify this claim by giving examples demonstrating the power
of this representation.

4

PROBLEM STATCMENT

The Programming Language

Cue to the rature of this project, a new production languzge, named PLX, was dasigned for
XREP. Because they did not nzed to contend with “features" of existing languages, the constructs of
PLX could be designed to focus directly on relavant issues. The justification for a production
language has an even deeper basis. Production languages have a simple control structure; in fact,
production languages have too simple a control structure for most programmer’s use, which explains
not only its absence in programiming shops but also its usefulness for analysis. Understanding a
program’s execution is simplified with a well-behaved flow of control. However, the nondeterministic
behavior of some productinn systems, including ours, can inhibit error detection by trying fruitless
backup instead of recognizing a true flaw. To aid in this case PLX has a “terminal® operator which
the monitor uses in trying to identify types of failures as they arise.

Another feature of production systems is their inspectability. Since debugging is a primary
concern of the system, the programs on which it operates must be easily modifiable. The production
rules maintain a perspicuity which make them ideal for this task.

Finally, though not normally used in thic way, production systems can impose a top-down
discipline on program creation. The complexity of acquiring a problem statement from a human
seems to dictate that an Automatic Programming system play an active role in the process.
Top-down methods provide an excellent framework on which to base such a dialogue, with the
nonterminals of the language acting as reference points for maintaining continuity. Unfortunately,
traditional producticn systems tend to defeat the top-down benefits by having unnecessary
nonterminals solely in order to produce the appropriate structure. PLX solves tris problem by
~eans of a structuring convention. The acquisition of a program is not a concern of this dissertation,
out (he structurirg issue is.

Execution Modelling

A model for understanding a program’s execution rust account for many details not found in
most systems. A Program Status Word or execution stack is not adequate for analyzing executicn
behavior. Besides presenting a current view of a process in the form of a program ccunter and a
data base, a model must also address dynamic issues accounting for the history of the entire
execution process: how control was passed and gained, when and where variables were bound, and
what data are available to a particular event. At tne same time, that model should reflect the
program it represents. In other words, the production language and execution moidel should
accommodate each other; the language, by simplifying the model’s construction, the model, by
maintaining the structure imposed by the language.

In XREP a threaded tree structure, called a Process Elaboration 'sraph (PEG), and an Access
Graph, which is just another view of the PEG, -atisfy those requirements. By emphasizing control
issues and maintaining closeness 1o tne production rules, the PEG becomes the focus of the program
modification algorithms. The Access Graph emphasizes a different picture of the execttion by
accentuating access and scope issues. Tlat is, given an event in the Access Graph, the data in its

adscssisioh, Wl

T T Y M L T T e M TSIy e W

PROBLEM STATEMENT

scope of reference are immediately observable. The discussion of the generic data types depends
upon this view of the PEG, since a graphic representation of all the bindings is necessary if
complicated references are to be accurately resolved. The global nature of the Access Graoh
provides a natural environment in which to view structural flaws that cause access errors.

Program Intentions

Without a formal expectation of a program’s performance, any debugging or understanding
system will only be able to react to task-independent prcblems. The ability to match expected
behavior to actual behavior will give a goal-oriented direction to debugging efforts. XREP accepts
an intention string for exactly that reason. The string, a sequence of "observable" program events,
is mirrored in PLX by a TERMINAL primitive which generates the “observable events." The system
will try to match this cutput against the given intention. The intention string is not meant to provide

a method for proof procedures; it is merely a tool to help the system produce more correct
programs.

The constructs presented in this section are designed to focus on debugging and intentions,
wliile alsc raising several side issues important to Automatic Programming. As representations, their

adequacy can be judged only by the methods which operate on them. The next section will describe
the intenit and scope of those methods.

1.4 DEBUGGING EXECUTION FLAWS

The extensive preliminary discussion was intended to stress the environment concept
fundamental to this report. The discussion of debugging will unify all the formalisms of XREP
by providing a coherent model in which to picture the execution process. Figure 2 depicts XREP as
two logical parts: a program executor and a program debugger.

A SYSTEM MONITOR is responsible for executing the PROGRAM written in the production
language. The monitor records the PROGRAM BEHAVIOR in the Process Elaboration Graph, while
checking that its behavior is consistent with the EXPECTATION, existing in the form of an intention
siring. If a difference is detected, the DEBUGGER is called. The first step is to IDENTIFY the nature

of tha error. That involves both CLASSIFICATION of the problem, and an EXPLANATION for its
existence. Then CORRECTION can be attempted.

PROBLEM STATEMENT

i --
]
5 PROGRAM EXECUTION
|
]
! -
i PROGRAM BEHAV|OR- EXPECTATION-
] |
: PEG INTENTION STRING |
5 |
]
: \ /
]
]
'
| SYSTEM |
! MONITOR i
]
P

I

DEBUGGER

1
1
I
]
.'
,I IDENTIFY
1
USER I————p- CLASSIFICATION
]
! EXPLANATION
:'
]
|
1
]
I

PROGRAM- l

PRODUCTION |=—m=ad CORRECTION
LANGUAGE

——— e e

Figure 2. Model of XREP

The range of errors considered by the debugger will be limited to reflect some of the
problems which can arise due to the impreciseress of English, The set of considered errors is
intended to demonstrate the adequacy of XREP's representations in terms of the issues raised
earlier. They should not be considerad a complete or minimal set for an Automatic Programming
system, but they are expected to be somewhat representative. Two are structure problems, another

PROBLEM STATEMENT

is associated with loop <o .*~ol, and the last deals with pronomial references. All four exemplify a
position taken by this system design:

Many Automatic Programming trai .lation problems can be resolved better by
studying dynamic behavior rather than a static description.

The basis for this decision comes from the intuitive methods used to resolve the problems. All seem
to be naturally suited to execution anaiysis.

Structural Dependencies

Computer science has become very conscious of structurec programming(iii), a concept which
is important mainiy because it forces a programmer to design a solution to his problem carefully
before coding it. The benetits of tollowing the disciplines imposed by structured prograrmming ara
numerous: the programs are easier to read, understand, and modify. These advantages are gained
because of the modularity resulting from delaying various design decisions until necessary. That is,
any "ahstract level” of the program contributes only what it must to the overall design. English
descriptions of process are notorious for doing exactly the opposite. Information is presented with
no regard fcr the programming concept of structure. Neglecting elegance for the moment, Automatic
Programming systems will have a difficult enough problem just in determining dependency issues, ie.,
what data is required for a process to operate. A linear (i.e,, nonhierarchic) representation of a
process, coupled with a global data base, loses all the structure inherent in English. Again, the
informality of English is to blame. However, the structure is there; otherwise anaphoric references,
ellipsis, and ambiguity could not be viable communication tools. Automatic Programming must find
that implicit structure to be able to write any program, structured or otherwise. The debugg'ng
effort for these problems accentuates the help that execution analysis can provide.

Consider an Automatic Programming system, structuring a process stated in English, trying to
deal with a reference like "the next to last person.” If this reference depends on the dynamic
behavior of the program (as do most such references) the Automatic Programming system will have a
hard time discovering, statically, whether at least two persons exist in the current context for that
reference io make sense. This problem is the primary structuring issue. Assuming that the
sequencing of the program is correct and two players do exist, its structure may present a context
in which only one person is accessible during the “next to last person” request. In that case XREP
will restructure it to make sense. The modification is made possible by the generic features of the
variables and the history of the process maintained by the Process Elaboration Graph. The naming
conventions imposed by typical programming languages are too rigid to facilitate this kind of
analysis. In this example the problem is too much structure. A related case occurs when the "next to

the last person" request succeeds, but points to the wrong person; this problem will be resolved by
a similar analysis.

(iii) See [DAHL 72] for a state-of-the-art discussion of this topic.

8

PROBLEM STATEMENT

Lack of Structure

The other structure issua appears when a program is running correctly, but is too linear;
access to unneeded information typifies that flaw. That is, an event has more information than it
needs to accomplish its task. The form of the generic data suggests a mnethod of detection by having
the system maintain a count of each generic type produced. If the associated maximum is known and
exceeded, a problem of this type can be hypothesized. The position taken by the debugger is that
an iterative process 1s at fault. The debugging effort involves finding the iteration point and
modifying it so that the cverfiow is correcte 1.

The impetus for handling this problem comes from future execution considerations. Later
accesses to this data may be ambiguous because of the extraneous data. Also, this kind of program
structure is not conducive to future modifications. Since the condition is detectable, fixing it seems
appropriate. Humans handle this situation by automatically maintaining contexts containing only
necessary information. Unfortunately, this structure is not transmitted in their description of
processes. Still, experts in vgrious fields have the ability to effectively manage their information by
structuring it to ease future access to it. The debugging effort here attempts to do the same in this
special case.

Loop Contrnl

Erroneous loop control is ancther "feature" of natural language. Examples will demonstrate
how humans determine iteration points dynamically from imprecise and ambiguous algorithms. This
problem will be viewed in terms of why it exists and how it might be resolved given the environment
presented thus far. Cnly a partial <olution will be offered, with no implementation, since a complzate
analysis of this kind of situation is the focus of other research projects.

Ambiguous Referenices

Anaphoric references present the hasis for the next analysis. Consider a reference like "the
first one." Syntactic clues may rict find the referent if the situation is ambiguous. English abounds
with such constructs, forcing language transiation systems to deal with them. The PLX generic data
forms provide a natural interpretation for this problem as an unknown type, while the intention
string gives the capability tc resalve it. The ease with which this can be done strengthens the
position to delay binding decisions as far as possibe.

The class of errors reviewed in this section is not meant to be complete. They cover a
variety of typical situations which arise when oealing with natural language. The formalisms attempt
to simplify the manifestation of those errors, thus enhancing the ability to correct them. If th.:se
problems can be solved, the fluency gained in communication with humans will allow an Automatic
Programming system to consider the program construction issue more directly.

Aol o

R S .|

PROBLEM STATEMENT

L5 PHILOSOPIIY OF PROGRAM UNDERSTANDING

Since "program understanding" encompasses such a variety of efforts, a review of the intent
of this dissertation is needed. Rather than formalizing requirements which define understanding, we
have presented an environment in which understanding can be demonstrated. This environment
includes several rew constructs, whose inclusion is justified by the resulting methods. The
advantage of this approach is also its weakness; the flexibility gained by having loosely connected
formalisms prevents the consistency required for proof. Thus in most cases methods are heuristics,
while constructs are justified in order to promote a desired behavior. Not enough is yet known
about programming to impose enough structure to formalize Automatic Programming. Yet, useful
results can be extracted if completeness criteria are not demanded. The environment concept
occupies a middle position in a spectrum which has batch computing on one side and total Automatic
Programming on the other. There is no need to sit at one end, waiting tor enough progress to make

the complete jump to the other. This philosophy addresses the immediate applications made possible
by Automatic Programming research.

10

2. AN INTRODUCTORY EXAMPILE

2.1 INTENT OF THE FXAMPLE

The object of this chapter is to introduce XREP and its formalisms in the context of a
Particular example. An analysis ot the English statement for that example will disclose communication
methods unigue to natural language. Section 2.3 will present a possible program for this
example, emphasizing specific constructs of XREP's production language suitable for these
communication methods. An execution of this program is then shown via the process graphs,
followed by a general discussion of how the intention string mechanism can be applied to this

problem. The goal is to show that the system constructs are both natural to English and adequate
for describing and debugging processes.

2.2 THE ENGLISII STATEMENT

Backgammon, a two-person game, is the setting for the example. The rules for the Leginning
of the game are as follows:

The game starts by having each player roll a die. The player with the largest
value makes the first move.

This example has several distinctively English characteristics which are ignored by computer
languages. They will be discussed here in terms of the English, while the next section will review
them in terms of their impact on XREP's production language.

The beginning of the statement, "The gnme starts by ...," introduces an immediate problem
by implying that the top-level structure of BACKGAMMON s the start followed by the rest of the
game, without clarifying whether the rest of the game depends on the start. Humans do not require
explicit instructions to help make distinctions of this sort. However, if an Automatic Programming
system is trying to structure this process and the distinction is important, any tentative decision

made by its translator should 4e simple to undo if proven wrong. A major reconstruction effort for
this common situation would be undesirable.

. b b e

s b i i

AN INTRODUCTORY EXAMPLE

The example continyes by introducing a struciure. The game segment ". .. each player rollfs]
a die" maps into the event “for every X do Y." No order is implied, while the action of each player is
independent of the Others. The event can be viewed in at least two levels of abstraction, as an
overall action, i.e., the die rolling, or in terms of the individual players each rolling a die. The former
view implies the existence of an addressable unir of information, whose internal composition can be
retrieved only by a request which acknowledges the independent actions. For example, ii the
second line of the pame said "The player makes the first move," an ambiguous situation arises

ge the multiple cemponents of the die-rolling unit.

something is wrong. in order to be legal, a request
specific selections or refer to all the players.

Since no individual player exists in that contert,
to the die-rolling unit must make

Addressing this kind of multilevel structure leads into retrieval methods exemplified by the
anaphoric reference in line two, "The player with the largest valye." Typically, information is crealeg
by !ype and referenced by that type with an ientifying predicate. Since the data is created in
some context, enough clues usually exist to identify it uniquely. Anaphoric reference is based on
this assumption; the predicate format is one way to supply characteristic information. The form of
ess the components of the unit introduced in the
previous paragraph. The predicate part of the reference offers detail which indicates knowledge of
the unit’s format, thus distinguishing it from a general reference like, "The player moves."

The second line of the game description points to another differe
Programming languages in the way procedures are invoked. Programming languages use a formal
Parameter -passing mecharism to identify a procedure and its arguments; English does not. Instead
it creater information as necessary, expecting the individual procedures to search their current
context and "find" what they need. In the example, a "first-move" procedure is to follow the rolling

of the dice. The English deccription does not tell what information the first move is to use other
than "the piayer with the largest valye" precipitates that action,

nce between English and

on the presumption that "closeness” to English is
rogramming system. By accurately

modelling English, the language also models English difficulties with specifying programs, thus making

the manifestation of an error relatable to the original text.

12

AN INTRODUCTORY EXAMFLE
23 A PLX PROGRAM

Figure 3 shows a program written in PLX which represents the BACKGAMMON segment
introduced in the previous section.

BACKGAMMON := STARY , REST-OF-GAME

START := (GENSEQ PLAYER -> ROLLDIE) -> COMPARE

ROLLDIE := (GENMEM DIEVAL)

COMPARE := (INSERT PLAYER.(INDEX MAX DIEVAL)) -> FIRST-MOVE
FIRST-MOVE := (TERMINAL PLAYEH.-] 'MOVES®)

REST-OF -GAME := . ..

Figure 3. Rules for beginning of Backgammon

In order to ease the discussion, the productior rules are simplified and use "..." in place of
program segments nielevant to the discussion(i). Afler the first rule is initially viewed abstractly to
explain the basic operations of production systems, all the rules will be inspected from two
standpoints: their role in the program and their derivation from the English.

A rule has three parts: a left-hand side, a rule separator, and a right-hand side. For the first
production they are BACKGAMMON, ":=", and "START , REST-OF-GAME" respectively. The left-hand
sides, also called nonterminals, represent the names of processes whose definitions are given by the

corresponding right-hand sides. Thus BACKGAMMON is a process made of two parts, START and
REST-OF-GAME.

To start vperation, the production system finds a definition for its distinguished beginning
nonterminal, in this case BACKGAMMON. Once a definition is found, it is executed. So, to piay
BACKGAMMON, first START is executed, then REST-OF-GAME takes control. Notice that since START

is also a nonterminal, the same process that was applied to BACKGAMMON is applied to START. This
recursive expansion of nonterminals stops when terminals are encountered(ii).

The symbols between the events of the right-hand sides (", and "->") have no bearing on the
order of axecution; control in XREP’s production language is the same as that in standard production

" systems. Their role will be explained shortly, during the discussion of the individual rules.

The first production

BACKGAMMON := START , REST-OF -GAME

(i) A complete definition of the language is given in Chapter 3.

(ii) See [GINSBURG 66] for a formal view of production systems (or rewrite systems as they are
often called).

13

e - T
P oo o o A o s
sk Tl o - i g aby A et i e L £

R

AN INTRODUCTORY EXAMPLE

is a simple rule composed of two nonterminals, START and REST-OF-GAME. While the previous
paragraph viewed them in terms of control, it also hinted at their top-down nature. As a description
of BACKGAMMON, START and REST-OF -GAME are sufficient; they are a complete view of the Zame,
Of course, each of these actions need be defined in terms of more primitive behavior, but notice

how, as nonterminals, .iey could be used by an Automatic Programming system as a basis for
inquiring about refinements or as a source for later questions.

Though the order of events ic implicit in production rules, the scope ot information for each
event is not. Consider REST-OF-GAME. In standard production tanguages it (and its descendants)
would be on a separate branch from START because both are in the same production rule. To make
the information generated by START available to REST-OF-GAM:, two approaches are possible: the
information can be made global or some descendant of START can generate REST-OF-GAME at the
right moment. Unfortunately, both solutions resolve the problem by destroying the top-down
benefits alluded to earlier. Instead, XREP’s language uses explicit event separators to handle this
situation. If an event is to have access to its predecessor’s data, then "->" is used between them; if

not, "," is used. By using avent separators, both dependency possibilities are retained without losing
the perspicuity of the top-down description.

In the first production rile, "," is hypothesized, meaning that START and REST-OF-GAME are
inde endent. If that assumption is wrong, just replacing "," by "->" corrects it. The simplicity of this
change is meant to model the apparent absence of this problem in English, where structural
dependencies seem to be determined easily and dynamically as needed. This same dynamic

reconfiguration will be seen in Chapter 5, where correction of these structural flaws is expedited
because of the event separators,

The second production

START := (GENSEQ PLAYER -> ROLLDIE) -> COMPARE

defines the START of the game. Corresponding to the English statement, "Each player rolls a die,"
the expression "(GENSEQ PLAYER -> ROLLDIE)" is the first example of a compound event, i.e., one
which is not a nonterminal. The execution of this event produces a structure consisting of a series
of independent actions. The "->" between PLAYER and ROLLDIE is actually superfluous in indicating
that ROLLDIE is the event which originates from this instance of PLAYER. If the English had said, "A
player rolls a die,” then the GENSEQ (generate sequence) would be repiaced by GENMEM (generate a
member). Thus, both forms "each X do Y" and "an X does Y" have an interpretation in the language.

COMPARE exists as a convenience to distinguish the action of rolling the dice from the

inspection of the result. Since "->" separates it from GENSE'), COMPARE does have access to both
GENSEQ and its descendants,

The third rule

ROLLDIE := (GENMEM DIEVAL)

has an example of a simplified use of the GENMEM primitive. Notice that the English did not describe

14

AN INTRODUCTORY EXAMPLE

how to "roll 2 die," so inclusion of this rule reflects its need hecause ot the action of the next

production. In any case, this production defines the ROLLDIE process as the generation of a member
of the set DIEVAL.

The fourth rule
COMPARE := (INSERT PLAYER.(INDEX MAX DIEVAL)) -> FIRST-MOVE

represents the statement "The player with the largest value moves first." The rule contains the first
example of a reference to a generic data type. PLAYER.(INDEX MAX DIEVAL) follows the general form
“type.exp,” where "exp" is some selector function pointirg to a specific instance of "type." Here,
PLAYER is the type and (INDEX MAX DIEVAL) is the identifying expression.

INDEX is a tunction which searches the appropriate GENSEQ structure in order to find the
required item -~ in this case, the largest DIEVAL. Sincz each player is associated with a DIEVAL,
pointing to a particular one identifies the PLAYER who rolled it. The affect is like saying JOHN’s 5, if
5 is the largest die value.

Once the appropriate player is found, INSERT sets him up as the generator of the FIRST-MOQVE
event. In this sense it has !\ie same effect as the compound event

(GENMEM PLAYER -> FIRST-MOVE)

The difference is that no new instance of PLAYER is created, an existing one is merely repositioned,
anticipating future reference. So, if a descendant says "He moves ...” or "The last player
mentioned,” the identification of the referent will have a firm basis. This method of having
procedures find their arguments is part of a heterarchical system design espoused at MIT
[MINSKY 72] and examined further by [WINSTON 72]. It proposes that "smart" systems should know
how to find relevant information themselves. The strict hierarchy imposed by formal parameter
passing methods is not natural to English.

The next rule
FIRST-MOVE := (TERMINAL PLAYER.-1 'MOVES”)

results in a terminal output event. That is, FIRST-MOVE produces a string like (JOHN MOVES),
representing the end result of a process. Another example of a generic variable, PLAYER.-1, occurs
within this TERMINAL event. This time the predicate refers directly to a position -- in this case, the
last PLAYER mentioned. The ease of this access comes from the work of the INSERT primitive, ie.,
INSERT reinstantiates a type’s value, while type.-1 retrieves it.

The intention string, described later in Section 25, is meant to match the composition and
sequence of these TERMINAL events. By placing the TERMINALs judiciously, various levels of program
detail can be revealed for testing or monitoring purposes. For now, tte TERMINAL represents an
explicit statement of the computation's status.

fLaS

AN INTRODUCTORY EXAMPLE

This section has viewed the production language in terms of the computing capabilicies
necessary to write programs. The nexi section, in presenting the process graphs, depicts the
production language as a vehicle for their construction.

2.4 THE PROCESS GRAPIIS

The structure which maintains a reccrd of a program’s execution is called the Process
Elaboration Graph (PEG). The information it cortains and the form it takes were influenced by a
variety of design decisions dealing with the production language, the generic data forms, and the
debugging capabilities. Though reflecting all those issues internally, the PEG requires anaother
conceptual view, called the Access Graph, to help depict the spectrum of claims made for it. By
presenting a view in which the preduction rules maintain their original form, the PEG relates a
program ard its flow of control, thus becoming the focus of the debugging algorithms. The Access
Graph, on the other hand, emphasizes data and scope issues by making access paths visually explicit,
a feature not present in the PEG. Through the PEG is the only structure maintained by the system,
the Access Graph exists to offer a more natural structure to view when access is discussed.

Assuming the players are named Joe and John, Figures 4 and 5 picture the Access Graph and
the PEG for the current example. The difference between them has an intuitive basis which will be
reconciled later in this section. First, the construction of these graphs will be compared to the tree
producec hy standard rewrite systems in order to emphasize the role of the event separators and
the form of the production rules.

s g

AN INTRODUCTORY EXAMPLE

BACKGAMMON
START REST-OF-GAME
| 4 |
] GENSEQ '
g PLAYER, == JOE PLAYER. 2=~ JOHN
:
| * *
| ROLLDIE ROLLDIE
E.: : i
E GENMEM GENMEM
i J | |
- DIEVAL, |==-3 DIEVAL, l=-1
3
COMPARE "
i]
INSERT '-'
PLAYER.1 = JOE
FIRST-MOVE
Figure 4. An Access Graph 3

17

AN INTRODUCTORY EXAMPLE

:. QACKGAMMON)

START_[=—={_ REST-OF-GAME)

COMPARE

GENSEQ

: PLAYER. = JOE -{PLMER.E-—-JGHN INSERT FIRST-MOVE
1 (roupie) (rouioie) (PLaver.1 = JOE) (rerminal)

| 1‘ I
GENMEM GENMEM C'JOE MOVES"

(oievac. 1= :D (bievaL. 1= 1)

Figure 5. A Process Elaboration Graph (PEG)

XREP and Standard Production Systems

The functional events, like GENSEQ, and the event separators make XREP's production system
different from others. yet by treating the functional events as nonterminals (while ignoring their
semantics) and by applying one transformation based on the event separators, the rules can be made
to look like those of other production systems. The transformation is as follows:

1. Whenever "A:=...B->C..." appears in a rule, change it to "A:=.,,.B™
and"B:=C...."

18

LY - e e L e o o a o L e i T T A e T
T T T P U S W ey - T L

b

AN INTRODUCTORY EXAMPLE

2. Whenever "A:=...B,C..." appears, replace it by "A:=...BC...."

Applying these transformations to the BACKGAMMON game, the rules become

BACKGAMMON := START REST-OF-GAME
START = GENSEQ’

GENSEQ’ = COMPARE

COMPARE = INSERT’

INSERT’ = FIRST-MOVE
FIRST-MOVE -

REST-OF-GAME =

A "standard" execution of this program produces the tree structure shown in Figure 6.

BACKGAMMON

START REST-OF-GAME

!

GENSEQ'

'

COMPARE

$

INSERT' f-'
MOVE
]

Figure 6. A standard tree structure

Al . R s

This traditional structure pictures an event’s access path, the path from an event to the root. !
By containing all its direct ancestors, the access path becomes the environment in which each event }’
carries out its task; in this sense it is like the control stack of traditional programming systems.
Other than the expansion of the GENSEQ and INSERT, the tree in Figure 6 has the same structure as
the Access Graph of Figure 4. Yet although Figure 6 depicts the context concept, the form of the
transformed rules loses all the structural perspicuity inherent in those of Figure 3. The event

19

Y R A

S S -

AN INTRODUCTORY EXAMPLE

separators act as more than syntactic devices; they prcvide the interface which gives the production
rules the structure necessary to model a process naturally.

Though the Access Graph's conutruction follows easily once the convention of the event
separators is known, by highlighting the access issues it distorts the relation between the form of
the production rules and the sequence of their execution. The PEG maintains that relationship, though
at the expense of the access issues. Consider Figure 5, the PEG corresponding to the Access Graph
of Figure 4. Its main feature is its closeness to the production rules. In fact, if the event separators,
encoded in the shape of the events, were ignored, the PEG would represent an implementation of an
n-ary tree generated from a standard production system. For example, Figure 7 shows some simple
rules from a standard rewrite system and its associated tree, both in a standard and implemented
form. In the standard form each father points to all his sons directly; in the implementation of this
kind of tree (since that is not a convenient form) each father points only to his first son, who in turn
points to his right brether, with the rightmost brother pointing back to his father.

A

/N .

B —=C -=D

/\ N\

X —»=Y

|

W . w

.0

[
< O

>x w >

B
X
w

Figure 7. Rules and trees from a standard rewrite system

The difference between the implemented n-ary tree conceptualization and that of the PEG iu
in the access path. In the former case the path is constructed by visiting all the father nodes, i.e., go
right until an "up link" to the father is found. However, that method does not work for the PEG
because of the interpretation the event separatore impose on the rules. Instead every left brother
is visited (hence the two-way links) and inspected to see if it is in the access path. An event’s
inclusion depends on its shape, rectangular if a "' follows it, or oval otherwise. Basically, a
rectangular event means it is protected, an oval event means it is viewable. Thus, the method to
determine the access patn in an PEG, trivial 1o define in an Access graph, is to (1) visit the left
brother, (2) if it is oval (i.e., viewable), it and all its descendants are included; if it is square, the
event is protected and not part of the access path, (3) if a leftmost node is encountered, move up to
the father and continue from step 1. This algorithm produces th: same access path that can be read
directly frcm the Access Graph, with the join in the Access Graph corresponding to the viewability
of the GENSEQ node by COMPARE in the PEG.

20

AN INTRODUCTORY EXAMPLE

The notion of access paths is crucial to understanding the duality of the fccess Graph and the
PEG. The collection of ail access paths defines a unique tree, The PEG, under this access path
mapping, thus represents one and only one Access Graph, ie., the Access Graph is just a
reconfiguration of the PEG. Both exist to focus on different aspects of execution emphasized by this
report. For now this intuitive concept of access paths will suffice; Chapter 4 will detail this
topic further.

Language Impact on the Process Graphs

Several language claims made in the previous section have a visual effect on the process
graphs. Consider the GENSEQ structure as an addrescabie unit with independent branches. The
access path of COMPARE contains GENSCQ and all its branches because of the viewability of the
GENSEQ node n the PEG (or the simple observation that the Access Graph has the GENSEQ structure
in COMPARE's direct ancestry). But an event within a particular GENSEQ branch (ROLLDIE, for
example) is independent of other branches. The Access Graph merely makes each branch separate,
while the PEG protects each branch from tre cthers by making the bindings rectangular. Notice that
the join in the Access Graph (after the DIEVAL's get bound) is conceptual in the PEG, reflected only
by the viewability of the GENSEQ node.

The bindinge, which result from generating objects, also contribute to the visual impact of the
graphs. The addressing mechanisms force the spatial positioning of the data within the graph,
stressing the importance of knowing not only what value an object has, but knowing when and
where it got its vaiue. Stack models also have this information (though only for a current branch of
the execution), but generally make it directly available only as a debugging tool,

Another examgple of the language influence is in the reintroduction of the binding
"PLAYER.1<~JOE" underneath the COMPARE event, By anticipating PLAYER.-1 requests, the graphs
have prepared the environment for future events so that this specific information is where they
expect it. This implementation supports the English which is likely to follow in the example:

"... The player with the largest value rmakes the first move. He"

Given no other information, PLAYER-1 is a likely translation for "He." The graph is ready for that
assumption by supporting the kinds of relative addresses used by English,

Review of the Process Craphs’ Features

This informal discussion of the process graphs was intended to give some overall feeling for
why they exist and what information each purports to carry. The following features, used to
evaluate a process representation, act as a summary for this section by reiterating the main issues.

° The representation presents a dynamic view of a process.

21

o e o o o Y a

PIREET e e e Ty e
s b o i e b : o y

B aakand eTap— M A

T BRI N e

AN INTRODUCTORY EXAMPLE

The static view of a process is the program which repr
why different states of that

only the contextual inform
information to help debug

esents it; the dynamic view concerns how and
program are reached. A history of the execution is required, to give not
ation which is necessary to carry out the zurrent evaluation, but also past
ging in case of failures. The PEG fulfills both of these conditions.

° A spatial view of bindings is emphasized.
The flexibility of the “type.exp"
pProcess representation.
information loss and an
process. Both the Acces

To separate the data from its generation
unnatural (from the standpoint of En
s Graph and the PEG maintain this spati

point can only lead to an

glish) representation of the binding
al view.

° The process representation should be easily modifiable.

The debugger will often
both cases the process r
to the next one:

try to reconfigure a Process, sometimes drastically,

sometimes trivially. |n
epresentation should be amen

able to such changes. This concern is linked

) The process representation should mirror the corresponding program.

This condition is the main claim made for the PEG and the production language. In executing a
process the manifestation of an error is often easy to detect, but assigning responsibility for that
error can be difficult. An analysis of the PEG during debugging can often involve disjoint branches.
Common ancestors can easiiy be found, often pinpointing the event responsible for the errcr, and

thus tie production rule involved. The close correspondence between the production rules and the
PEG makes this information both findable ard usable.

2.5 STATING EXPECTATIONS IN PLX

Trying to formalize methods f
detail can make debugging expectati
and depth of such attempts sygge

prove that a program is correct, t
for rigor.

or stating program expectations can be
ons as formidable a task as debuggiag
st that flexibility should be th
he detail supplied for proof sh

self-defeating; too much
Programs. The diversity
e main objective. Even in trying to
ould depend on the user’s judgment

Consider the example of this chapter. The expectation for the Program can depend on many
how well the Program is understood, how confident the user is of certain program
components, how many checkout att

empts have been made, etc. For example, all the following can
be considered statements of expectations for the BACKGAMMON program:

things:

22

PP PR My .

AR oty sy

AN INTRODUCTORY EXAMPLE
L. (The program halts)

2. (The MOVE event is entered)
3. (JOE MOVES 3 AND 1)
4. (JOE MOVES)
5. (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES)
6. (GENSEQ entered) (COMPAFE enterad) (MQOVE entered)
All are valid expectations and can be useful at various phases of the program’s development. The

second might correspond to a state where the start of the game is considered checked out, while the

fifth represents a full observation of the external events. The point is that any level of detail should
be possibie for stating expectations.

The system supports this position by providing a TERMINAL primitive for this purpose. The

sequential collection of TERMINAL outputs constitutes the list which must match the intention string.
In Figure 3 the rule

FIRST-MOVE := (TERMINAL PLAYER.-1 "MOVES")

has this TERMINAL event. An intention siring for this program segment would therefore be (JOE
MOVES). If the intention string is to be (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES), then the rule

ROLLDIE := (GENMEM DIEVAL)

could be changed to

ROLLDIE := (GENMEM CIEVAL) ->
(TERMINAL PLAYER.-1 'ROLLS’ DIEVAL.-1)

Again, the level of detall depends upon the placerent of the TERMINAL events.

By treating expectations this way, XREP can be used as a parser; the intention string is the
mnput, the TERMINALs guide the parsing. The production system is, of course, a perfect vehicle for
carrying out this analysis; many production systems are used in some kind of parsing operation. The

nondeterministic behavior of a production system finds a successful path though the rules, while
masking, false attempts.

Another observation about the intention string mechanism keeps it in proper perspective. The
ability to state program expectations is a tool to aid in verifying programs, yet the intention string
has a "test-case” flavor with little formal basis. As a result, when a program ma. nes a particular
string, little more can be said other thar the program matched that particular intention string. While
certainly no basis for proof, a successful parsing does have some measure of correctness to it.
Dijkstra said that this process “can be used to show the presence of bugs, but never to show their

AN INTRODUCTORY EXAMPLE

absence!"(iii) Though true, that statement does not reflect how useful that detection can be in
debugging errors. Formal proof methods give few indications as to the cause of a failure when one
is detected. As will be shown, the intention string mechanism provides a good environment for
detecting and correcting bugs.

26 SUMMARY

By analyzing an English example fromlomatic Programming viewpoint, several situations
unique to natural language and traditionally ignored by computer systems have been uncovered. Not
only are they a basis for XREP's language and constructs, but they also represent the focus for the
debugging algorithms. The Automatic Programming paradigm offers both a new framework in which
to address representation issues and new criteria by whiech to judge their adequacy. This
dissertation peints to human communication methods as a source for its language representations,
while claiming that close modeiling of naturai language problems plus the ability to resolve them
measure the representations’ adequacy and worth. The hypothetical role of Automatic Programming
makes XREP theoretical and open-ended; as a test-bed for representational ideas, XREP can ignore
the severe problems associated with producing a "closed" system. The results of succeeding
chapters should be viewed in this light.

(iii) O.-J. Dahl, EW. Dijkstra, and C.A.R. Hoare, Structured Programming, ed. by C.A.R. Hoare (New
York:Academic Press), 1972, page 6.

24

¢ Ga R b S e R T S S SRtgy S L St Cgu——
o N S e— TR R IR R—— —— . o
ittt it S ety i ol i - b

3. THE PRODUCTION LANGUAGE - PILX

3.1 PRODUCTION SYSTEMS IN CENERAL

The derivation of a computer program from an English statement by Automatic Programming
systems re juires a diversity of expertise which starts with understanding and representing natural
1 tanguage and concludes w:h debugging and proving the correctness of the generated program.

If this process takes place in an interactive environment, then both the Automatic Programming
system and the user must have a target to provide direction to any discussion. That target is the

b program being generated; thus the programming language is the vehicle of the process acquisition
r dialogue.
4 The importance of our programming language, PLX, thus rests on its central role as ihe

language in which the user’s program (after translation) is stated and the system’s understanding is
based. It is therefore nalural tha it be designed to reflect the handling of variables and structural
properties of natural language In a maintainable manner, and to address the computing issues which
arise in understanding programs: what computer resources are needed during execution, how

execution should be recorded, and how {his recording can be used to debug the program (within the
user’s framework).

Although our main concern in this report is with the automatic derivation of computer j
programs from natural language staterrents, we must first develop a detailed understanding of how
these programs wii! be represented and how, as we will show, this aids in the automatic derivation
process. The worth of PLX thus depends not on how well it compares to other programming
languages, but how well it responds 10 the expressiveness of English and the functionality questions
taced by the Automatic Programring generator and debugger. The first step in our evaluation of
PLX concerns the decision to make it a production language.

Psychological Considerations

The acquisition of knowledze from human protoccl presents psychoiogical considerations in
designing the appropriate mode! for that information, Justificaiion of PLX as a production system on

such grounds can only be hypothesized by investigating other works whose primary task was the
actual use of such protocols.

25

e ade A b - b et g

g Rl R e, i

re o

.;-v, PERO RS

o T, i Gl o L Liad g il e L o

THE PROCUCTION LANGUAGE - PLX

In their study of human problem solving, Newell and Simon theorize that the actual
organization of human programs closely resembles a production system organization. As they claim,

A production system encodes homogeneously ‘the information that instructs the
information processing system how to behave.(i)

That is, no division exicts between program information and

program control flow except that order
of productions may carry additional information., Further,

In a production system, each production is independent of the others -- a
fragment of potential behavior. Thus the laws of composition of production
systems is very simple: manufacture a new production and add it to the set.(ji)

Information from humans does no! come in a concise algorithmic form. Instead, it seems to be
fragmented into related segments. This style of input is well suited for production rules.

The procuctions themselves seem to represent meaningful components of the
total problem solving grocess and not just odd fragments.(iii)

Though information is tragmented, each piece in the form of a production rule identifies a coherent
idea presumably complete unto itself. If this concept is used as a goal, an Automatic Programming
system can use a production rule as a subgoal in trying to produce a whole program.

The theory which embodies those claims becomes the basis f
Waterman and Newell in their PAS-Il system [WATERMAN 73],
protocols is represented as production rules in
rules to nodes of their Problem Rehavior Graph
derived by the subject. The psychological fram
systems relevant beyond the mere computing ca

or the protocol analysis done by
In it, information for analyzing
a pattern-action format. The application of those
models the acquisition of a new piece of knowledge
ework of their work makes their use of production
pabilities inherent in such a system,

‘The DENDRAL work ((BUCKANAN 69), (BUCHANAN 71], [BUCHANAN 72], among others) is
another study which uses a production system to model one part of its knowledge base. DENDRAL
tries to find chemical structures from mass spectrometer data by using heuristics which were
originally hand coded from dialogues with chemistry experts. Later, these ideas were encoded within

a production system as situation-action ruies in order to separate the theory from the program. The
flexibility gained is used to the authors’ advantage.

(i) A. Newell and H.A. Simon,
804.

lluman Problem Solving. New Jersey: Prentice-Hall, 1972, pE.
(ii) lbid.
(i) Ibid.

26

THE PROBUCTION LANGUAGE - PLX

Changing the theory, then, involves little actual reprogramming. This allows
experiments to be carried out with different versions of the theory, a very useful
feature when dealing with a subject as uncodified as mass spectrometry.(iv)

The Automatic Programming problem is similar to the praotocol analysis of PAS-Il and the i
DENDRAL program in the kind of original data it starts with and the nature of the finished product,
i.e., the input is the result of a process whose structure must thereby be inferred, By dealing with i
natural language, Automatic Programming must also contend with the fragmented nature of human i
dialogue, reinforcing XREP's decision to use a production language for dialogue modelling. Thus, the
above quotation is also applicable to Automatic Programming.

Funetional Considerations

The psychological hypothesis of the last subsection was meant to give some intuitive basis for
the production language of XREP. The functional considerations have direct impact on this

report, since many of the results will claim that the character of the productions made the
appropriate analysis possible.

Functinnality, however, does not rafer to the computing power of the language. Since most
languages have Turing machine capabilities, the range of computable functions is the same. Instead,
functionality should be measured by the auxiliary benefits gained by a particular notation. In XREP,
the debugging capabilities are often made feasible because the program is a series ¢* "independent”
production rules, each analyzable as an entity. By isolating a program segment this way, a specific

analysis has a clear domain on which to work. Several works have been successful beause of this
property of production systems.

In his , ogram for automating the learning of heuristics, Waterman used production rules for
representing them, claiming that this representation technique "permits separation of the hauristics
from the program proper, provides clear identification of the individual heuristics, and is compatible

with generalization schemes."(v) He was intent on making the theory, represented by the production
rules, an entity amenable to analysis.

The PAS-Il system mentioned in the previous subsection is the vehicle for Waterman's latest
work, Adaptive Production Systems, in which production language programs are modified
automatically by having the syster generate and insert new production rules as learning takes place
[WATERMAN 74), Again, the nature of production systems aids his analysas.

(iv) B.G. Buchanan, G.L. Sutherland, and E.A. Feigenbaum, “Rediscovering some Problems of
Artificial Intelligence in the Context of Organic Chemistry.” Machine Intelligence 5. Ed. by B,
Meltzer and D. Michie (Edinburg: Edinburgh University Press), 1969, pg. 274,

(v) D.A. Waterman, "Generalization Learning Techniques for Automating the Learning of Heuristics.”
Artificial Intelligence, Vol. | (1970), pp. 151.

27

F
]
1
3
!
E
L
]

e i gelF oaales o T el

THE PRODUCTION LANGUAGE - PLX

A different study used a production system to represent inference rules for natural language
relations [LINGARD 72). Lingard ard Wilczynski used a Backus Normal Form (BNF) representation for
stating the interaction tetween relations. Thus a rule like "GF -> F F" could represent the fact that
a grandfather (GF) is the father (F) of the father. Their system could accept requests like
(JOHN GF JOE) and deduce its truth by using the grandfather rule, and the two assertions
(JOHN F FRED) and (FRED F JOE). By representing the relation interactions this way, a uniform
parsing algorithm could be used to carry out the analysis within an associative data base. In his
Ph.D. dissertation Lingard continues that investigation [LINGARD 75],

The inspectability and accessibility of production rules are the main issues of this discussion.
If XREP's debugger is to function effectively, it must work on a representation that is responsive to

the requests which might be made of it. In Chapter 5, the scope of information needed by the
debugger will emphasize these points.

Other functional benefits of the production language will be discussed later in Chapter 5 and
Section 35 when enough of XREP has been detailed to adequately state the claim. The rest of
the section is devoted to PLX, its environment, terminology, and primitives.

3.2 THE PROGRAMMING ENVIRONMENT FOR PLX

The production language character of PLX comes strictly from its control flow behavior. The
design of its other facilities was influenced more by the environment in which PLX was programmed
than by classical production language 1ssues. To put the capabilities of PLX's primitives in the
proper perspective, that environment will be described first.

XREP is written in INTERLISP using the data-base extensions of the API language
[BALZER 74a). APl, a LISP-based pattern match-language of the PLANNER(vi) generation, is tailo-ed
for the Automatic Programming project at the USC Information Sciences Institute. The properties and
peculiarities of AP| will not be detziled here; only the facilities borrowed from it will be considered.

The data base is ascociative; information is stored as tuples whose first item is the relation
which associales the others, in either a positional or keyword manner. Any item of a tuple, including
the relation, car itself be a tuple. Neglecting the question of variables and literals for the moment,
all the foliowing are legitimate entries:

(FATHER FRED BOB)
(BETWEEN BOTTLE (CHAIR TABLE))

(PARAMETER ROUTINE A B (C D))
((COMPOUND RELATION) X Y)

(KEYRELATION (KEYWORD1 X) (KEYWORD2 Y))

(KEYRELATION (KEYWORD2 Y) (KEYWORD1 X))

(vi) See [BOBROW 74] for a review of this generation of Al languages

28

i e o ks o i g e
v Ok v 3 et - r
& L . P LR TOTPL Imessmertuy Mot somp oo smedice: o

THE PRODUCTION LANGUAGE - PLX

The last two are equivalent examples of keyword tuples. The ambiguity of which type of relation is
which (since they all look the same) is resolved by forcing each relation to fall into disjoint classes,
either positional, keyword, or function (described below). So, in the examples, if KEYRELATION is

declared keyword, the last two tuples are the same. If KEYRELATION is positional, then they are, of
course, different,

Each tuple is assigned a unique name and stored in a named context given in its assertion.
These conlexts can be hierarchically organized tor retrieval purposes and are under user control.

The contexts effectively segment the data base into isolated sections, while the context hierarchy
joins the sections as the user wislies.

Another important feature of APl comes from allowing i's predicates and patterns to consist

of an arbitrary mix of LISP functions and APl expressions. For example, FS* is an APl function
whose form is

(FS% <variable> <pattern>)

This function matches the pattern, but returns the value of the variable mentioned. In this sense,
FSx acts as a selector function based on the variable in the pattern. Thus

3 (FS* NUMBER (AGE NUMBER B0B))
| says to find a NUMBER such that NUMEER is the AGE of BOR. If the retrieval is successful, NUMBER

is bound to the desired value, which is then returned as the value of the FSx expression. If the
retrieval fails, the returned value is NIL, the false atom of LISP.

Another possible expression is

(FSx NUMBER (AND [WIDTH NUMBER BOARD][GT NUMBER 107))

= whose interpretation is to find a NUMBER larger than 10, which is also the WIDTH of a BOARD. This
example shows a mixing of an AP expression, (FSx . . .), two LISP predicates, (GT . . .) and (AND . .),

T T e s

and an AP! tuple, (WIDTH...). This marriage permits a great deal of power and convenience by

allowing the user the expressiveness of both systems without restricting him to either.
3
3

3.3 PRELIMINARY TERMINOLOGY)
é
}

The following terminology appears throughout the description of PLX. Though some of the

terms have been used before in a loose manner, they will now be linked more closely tc the
production language. ‘

. BELie

THE PRODUCTION LANGUAGE - PLX

® An event is either a simple or a compound event.
o] A simple event is ari atoric eleinent to be used as a nonterminal,
° A compound event is either (1) a parenthesized expression whote first element is a

system primitive or (2) an expression with events separated by "," ar "->",

® A node i1s either a simple event, a type 2 compound event, or the result of executing a
type 1 compound event. It has the following properties: (1) it can only have one
ancestor and (2) all generated offspring must be new nodes (henc> no loops).

) A typed variable is a type together with an identifying expressicn (separated from the
type by a ""). The expression can be either a generation number or a function which
points to a particular binding -- for example, PLAYER.1, and PLAYZR.(INDEX MAX DIEVAL).

® A generation numnber is an integer which identifies the relative position of a variable
type in a particular path from a point in the generation tree.

Thus PLAYER.2 defines the second player mentioned from some point, while, by convention,
PLAYER.-]1 refers to the last player inserted into the PEG, PLAYER.-2 to the next to last plave-, and
so forth,

] An access path from an event in the tree is the unique ancestor chain of events and
r.ades up to the root.

In defining what an event can reference during its execution, the access path becimes the
environment for any evaluation done by the event.

30

TR NS e T

ma e

W e —

cade o _p gl e i cBedaule oy o Roldldoe b LR L Sl

THE PRODUCTION LANGUAGE - PLX
34 PLX PRIMITIVES

The current version of PLX has six primitives whose syntax and functional behavior will be
riven here in an informal manner. The next section will give a formal description of each primitive

showing its effect on the PEG, while at the same time describing how the event separators cause the
primitives io interact.

The form of a production rule is:
%
<parenrt-def-name> := <event> [{, | -> } <event>]

In other words, a valid rule is one whose right-hand side is one or more events separated by "," or

"->". Besides simple events (i.e., nonterminals), an event can take on any of the following forms:
(GENMEM type APl-predicate next-event)
(GENSEQ type APl-predicate next-event)
(COND AP] -predicats)
(INSERT type.APl-expression)
(TERMINAL AP]-expression)
(FUNCTION APl-expression)
The GENMEM event given by
(GENMEM type APl-predicate next-event)

binds a local variable, raking it the "generation" point for "next-event." The value of the variable is]
chosen from the global data base by the AP! request '

(LOCAL (ENTITY)
(MATCH {AND (AMQ ENTITY type)
APl-predicate)))

LOCAL is an APl function which creales local variables -- in this case only ENTITY. MATCH is
another APl function which tries to match the pattern given -- in this case
(AND (AMO ENTITY type) APl-predicate). The pattern’s interpretation is to find an ENTITY such that
ENTITY is a member of (AMO) the set “type" while also satisfying the APl-predicate. The presence
of the APl-predicate, ignored in the example of Chapter 2, acts as a filter between the data bzse
and the potential values. So, for example, if the data base has the following assertions:

R

(AMO 1 DIEVAL)
(AMO 2 DIEVAL)
{AMO 3 DIEVAL)
{AMO 4 DIEVAL)
(AMO 5 DIEVAL)
(AMO 6 DIEVAL)

31

N (- ———

Loaace i 0 -l g L L b b e

THE PRODUCTION LANGUAGE - PLX
then

(GENMEM DIEVAL T (-> NEXT)
will pick any of the DIEVALs, while

(GENMEM DIEVAL (EVENP ENTITY) (-> NEXT))

will consider only the values 2, 4, and 6, since EVENP is a LISP predicate which tests for the
"evenness"” of a number. In either case an appropriate DIEVAL is chosen and assigned to DIEVAL.] if
this is the first DIEVAL to be bound, DIEVAL.2 if this is the second, and so on. Execution of NEXT
follows this binding process.

The effect of the GENMEM statement is to produce a variable which is local to the current
path of the program. In many production systems, all actions depend on a global data base; there is
no notion of local variables. In PLX, the typed variables, as generators for future events, act as
locals, a feature which gives XREP the capability to contend with questions about data structuring.

Once the binding takes place, "next-event" is executed. If some failure occurs later,
backtracking may return processing to the GENMEM for selection of a different value, making
GENMEM a "choice point” in the execulion of a program.

The GENSEQ event given by
(GENSEQ type APl-predicate next-event)

has the same action as a GENMEM event, except that all values of "type"” which satisfy the
APl -predicate are chosen, each of which is to be followed by "next-event." The effect is like having
n independent (i.e., no interaction) GENMEM events, where n is the number of values which pass the
APl-predicate. The GENSEQ is not meant to model a loop, but instead models a structure of disjoint
actions which would otherwise be difficult to represent.

(COND APl1-pred) is a predicate event which acts as a filter to the current production rule.
When a COND event is encountered, it is evaluated. If its result is NON-NIL, the processing proceeds
normally. 1If it results in NIL, then a FAILURE is detected and processing backs up to the last choice
point: a GENMEM or a rule choice (to be explained in page 43).

if COND is the first event on the right-hand side of a production, the effect is very close to
the situation-action pairs of the production systems found in DENDRAL and PAS-ll, or the
pattern-invoked procedures of PLANNER. That is, a rule is chosen and acted upon if the situation
(COND) matches. The generality of AP|-predicates gives the COND event arbitrary testing power.

(INSERT type.exp) is an event used to "find" a specific typed variable bound in a preceding
event and to reinsert it into the local context. A GENSEQ or GENMEM must be an ancestor of the
INSERT and the search for "type.exp" must be successful. The expression "exo" is arbitrary and

32

Sl il LR i o BT e ey

THE PRODUCTION LANGUAGE - PLX

must have a valid interpretalion, i.e., it must point tu a specific bound instance of "type." If no
PLAYER has been bound in either & GENSEQ or GENMEM, then

(INSERT PLAYER.<anything>)

is erroneous. The effect of the INSERT is to reinser! the typed variable into the PEG (without giving
it a new generation number) for future references,

(TERMINAL AP1-exp), by evaluating APl-exp and "outputting” the result, acts as the program’s
interface to the outside world. 1i XREP is in a monitor mode, then the collection of TERMINAL event
computations, in the order of their occurrence, must match the given intention string.

(FUNCTION AP1-exp) evaluates APl-exp for its effect only. Since the control structure of PLX
includes automatic backtracking for certain faiures, the effects of FUNCTION may need to be undone.
However, due to the anticipated frequency of FUNCTION events, state saving prior to execution may
be impractical. The solution involves the use of APl contexts and a policy decision. Each FUNCTION
statement is given a new AP] context, linked hierarchically to existing ones, in which to make any
new assertions that affect the state of the world. !f this event is then to be eliminated by
backtracking, then XREP needs only to remove its context from the hierarchy to undo all its effects.
As long as the event has not changed any globals, its remcval will be clean.

3.5 FORMAL DESCRIPTION OF PLX

A formal deccription of PLX will be given by first viewing abstract productions and the
evaluation environment created by the ecvent separators, next reviewing the control flow of the
production language, and then showing how each primitive maps into the PEG. When the semantics
of PLX are defined in terms of the PEG, the description of the language becomes operational, giving &
firm interpretation to any construct whiie also making any structural changes to the PEG during
debugging immediately relatable to the language.

Abstract Productions and Event Separaters

The right-hand side of a production was shown to be a sequence of events with event
separators, either "" or "->", hetween each pair. The event separators affect the evaluation
environment of any event, a concept to be detailed in Chapter 4. Now they will be analyzed for

their impact on the PEG and Access Graph only.

Figures 8 and 9 show the simplest rules involving an event separator. In Figure 8 the ",
between B and C means that B is protected from C, reflected in the Access Graph by having B and C

33

THE PRODUCTION LANGUAGE - PLX

on separate branches from A, and in the PEG by making B a rectangular event{vii). The evaluation
environment for an event consists of the global data hase plus all the information in its access path.
In the Access Graph an event’s access path is obvious, consisting of all events "above" it. In the PEG
the access path is not so clear, since each right-hand side produces a single level under its father;
the structure explicit in the Access Grapn is implicit in the PEG. Chapter 4 will show how to derive

access paths from the PEG. For the purposes of this chapter, look at the Access Graph when this
information is necessary.

In Figure 9, B is viewable to C, because "->" separates the events. Thus C is under B in the
Access Graph, and B is oval in the PEG. This configuration means that C has access to everything
generated by B, a situation which is obscured in the Access Graph, since it looks as if B has already
done its work by generating C. However, the PEG clarifies this misconception by showing that B can
still generate information, since it is currently an unopened leaf of the tree.

/\ A\

Access Graph PEG

Fizure 8. A:=8,C

=)

®-—0

O —— © ———— >

Access Graph PEG

Figure 9. A: =3 ->C

(vii) Since the rightmost event in the PEG has no "brother" successor, its shape is immaterial.

34

THE PRODUCTION LANGUAGE - PLX

Figures 10 through 13 show all the possible productions with three events in the right-hand
side of the rule. Again notice in the PEG that one production rule results in one level under the
father. The PEG constructicn for a production is trivial; write down all the events, if "" follows one,
make it rectangular, otherwise make it oval (this accounts for the fact that the last event is always
oval, since no event separator follows it). The construction of the Access Graph is not so obvious,
though still not difficult. The algorithm is as follows:

1. Write the first member of the right-hand side under the left-hand side
nonterminal,

2. For each successive (event-separator event) pair, if the event separator is "",

then write the event down as a new branch under its predecessor’s father; if the
event separator is "~>", then write the event under its predecessor.

For example, in Figure 12, B is written under A according to step 1. Next the pairs (-> C) and (, D)
4 are considered in order as stated in step 2. Since "->" precedes C, C is written under B. Then,
since " precedes D, D is written as a new branch under the father (B) of its predecessor (C),

resulting in the desired tree.

B C D . ﬂHCd—.—@

Access Graph PEG

Figure 10. A:=B,C,D

35

T L e

TS T SV g I o LY

36

THE PRODUCTION LANGUAGE - PLX

}
|
i

Access Graph

Figure 11. A:aB->C->D

|
A

Access Graph PEG

Figure 12. Am=B->C,D

R e A i ey

o
P
7

A 8 . -

THE PRODUCTION LANGUAGE - PLX

| C[
D

Access Graph PEG

Figure !13. A:=B,C->D

Figures 14 and 15 nicture two Access Graphs still unaccounted for., Conceptually, they can be
thought of as representing the production rules given in their associated figure. However, no
configuration of the PEG can account for the parenthesized expressions (B -> C) or (B, C), called a
type 2 compound event in Section 3.3, while stili maintaining the conventions that each production

adds just one level to the PEG. The prublem is fortunately not important and is circumvented by
forcing rules like

A=(B->C),D
to be rewri‘ten as the pair

A :=temp,D

temp =B ->C

This transformation has no substantive effect other than to add an extra nontermin.! in the Access

Graph and introduce another level in the PEG. For this reason type 2 compound events will not be
considered further.

37

et e b i il

THE PRODUCTION LANGUAGE - PLX

\

Figure 14. A:=(B,C)->D

Figure 15. A= (B->C),D

38

THE PRODUCTION LANGUAGE - PLX

GENMEM (GENMEM)

type.n em— vaZi Ctype.n.‘_vaZD i

next-event ‘ next-event)

Access Graph PEG

Figure 16. Graph structure of a GENMEM event

39

THE PRODUCTION LANGUAGE - PLX

PEG Mapping of PLX's Primitives

The GENMEM event given by

E
|

' (GENMEM type APl-pred next-event)

produces the structure shown in Figure 16. The generation number n assumes that n-1 occurrences
of "type" exists in the access path of this GENMEM. A member of the set "type,” "vali" satisfies the
APl-pred. If no type is found, then this event fails, leading to backtrack. If a GENMEM is backed on
to, a new value of "type" is picked.

The GENSEQ event is given by
(GENSEQ type APl-pred next-event)

results in the structure of Figure 17. The generation numbers start at n, as in the GENMEM event,
and end at n+m-1, where m is the number of the vali which satisfy the AP1-pred. The bindings are
rectangular, since each branch is to be independent of une another -- a situation visually apparent
in the Access Graph.

b o ax ol i e el e s L

The INSERT primitive given by

(INSERT type.APl-exp)

has the simple structure of Figure 18. The form “"type.number=value" reflects the generation
number and the value of the found "type." If type.APl-exp does not point to a unique binding, this
statement fails and backup takes place.

The TERMINAL primitive given by

(TERMINAL APl-exp)

is seen in Figure 19. The "result" of evaluating APl-exp is inserted into the PEG for future
reference.

The other two primitives, FUNCTION and COND, add nothing to the PEG other than their nime,
since they exist for their immediate effect only.

40

THE PRODUCTION LANGUAGE - PLX

GENSEQ

tyPE. N e val] ture.n+la— valy type. ndm=] am—— iy

l l

next-cvent next-event next-event

B S v S e

Access Graph

Z.a'
i
£
&

GENSEQ

L et

<

tyre.nes=valy type.ntlam—vcly lop

ool TUPC.NPM- lam— ol g

next-cvent ‘ next-event ’
PEG

Figure 17. Graph structure for a GENSEQ event

4]

THE PRODUCTION LANGUAGE - PLX

INSERT INSERT

type.number = value type.number = value ’

Access Graph

PEG

Figure 18. Graph structure for an INSERT event

Access Graph PEG

Figure 19. Graph structure for a TERMINAL event

Control Flow in PLX

The control fiow in PLX de
the execution of the

procedure will be given

pends upon the state of the PEG. Both will
program given in Chapter 2. First, a short over

be described by tracing
view of the processing

42

THE PRODUCTION LANGUAGE - PLX

At any point during execution of a program, XREP focuses on the "leftmost" unopened event in
the PEG, called the CURRENT-EVENT. "Unopened" means that the event is a nonterminal which has
not yet been expanded or a PLX primitive which has not heen executed. In the nonterminal case,
XREP chooses an applicable production rom the set which has CURRENT-EVENT as its left-hand side.
If the set has more than one possibility in it, then a “"thoice paint” is sat up for backtrack purposes if

the chosen rule leads to failure. Thus XREP maintains two kinds of choice points, one in picking rules
for nonterminals, the other for picking types in GENMEM events

Once an event has done its work, control pas

ses to the next-leftmost unopened event,
determined by an algorithm called SUPER-

NEXT. The algorithm is as follows:

a) It CURRENT-EVENT has a downward pointer,

take it and go to step b. Otherwise
go to step c.

b) If the event is unopened, make it the CURRENT-EVENT. Otherwise go to step a.

c) It the event has a right pointer, take it and go to step b. Otherwise go to step d.

d) Take the upward pointer (whicih must exist or

step ¢ would not have failed) and
go to step c.

Basically, SUPER-NEXT 1s a downward tr
the PEG, step b tests, while ste
now be traced (the program i

ee search for the first unopened event. Step a moves down

ps ¢ and d move up and to the right. The BACKGAMMON program will
s repeated for convenience with syntactic updates).

BACKGAMMON := START , REST-OF -GAME

START := (GENSEQ PLAYER T {-> ROLLDIE)} -> COMPARE
- F ROLLDIE := (GENMEM DIEVAL T)

COMPARE := (INSERT PLAYER.(INDEX MAX OIEVAL)) ~> FIRST-MOVE
FIRST-MOVE := (TERMINAL PLAYER.-1 "MOVES”)
REST-OF -GAME := . .,

Figure 3. Rules for beginning of Backgammon
The program starts with BACKGAMMON as the CURRENT-EVENT.

1. Since BACKGAMMON is a nontermi

nal, a rule is chosen and attached to the PEG. For this
nonterminal the rule is:

BACKGAMMON = START , REST-OF -GAME

Figure 20 shows tle current PEG, Noii

ce that START is rectangular due to the ""
the production.

», which follows it in

THE PRODUCTION LANGUAGE - PLX

(eAckGAMMON)

START "—-(REST-GF-GAME)

Figure 20. PEG after step 1

Application of SUPER-NEXT to BACKGAMMON rmakes START the next CURRENT-EVENT.

2. Since START is a nonterminal, a rule is chosen for it and attached as in step 1 above. The

rule

START := (GENSEQ PLAYER T (-> ROLLDIE)) -> COMPARE

results in Figure 21 with control passing to GENSEQ.

CBACKGMMO N)

START --—QEST-GF-GAMD

GENSEG} -(COMPARE)

Figure 21. PEG after step 2

44

Bl & Jn .

THE PRODUCTION LANGUAGE - PLX

3. Since GENSEQ is one of the system primitives, it is executed producing the PEG in Figure
22. The two generation numbers

s for PLAYER are | and 2 because this is the first instance of this
type. Control now passes to ROLLDIE under PLAYER L,

< BAC KGAMMO@

START REST-OF-G '*.ME)

QGENSEQ)- RCOMPA.RE)

PLAYER. 1=— JOE PLAYER. 2= JOHN

Cow) (@

Figure 22. PEG after step 3

4. ROLLDIE, a nonterminal, produces the GENMEM event, which results in turn in a binding for
DIEVAL.1. Since this GENMEM has no “next

-event" in its definition, control passes normally to the
ROLLDIE under PLAYER.2, where a binding for DIEVAL is chosen as before. Figure 23 shows the
state of the PEG.

45

Tl

| THE PRODUCTION LANGUAGE - PLX

CBACKGAMMO@

START REST-OF-GAME)

(cENsEQ) H:CCGMPA'RE)

; |\

PLAYER. 1=—JOE ‘-LPLAYER. 2- JOHN

< ROLLDIE ROLLDIE

(GENMEM) C GENMEM)

QIEVAL. I*D Q)IEVAL. |])

Figure 23. PEG after step 4

5. Control passes to COMPARE which causes the production

COMPARE := (INSERT PLAYER(INDEX MAX DIEVAL)) -> FIRST-MOVE

to be appended to the PEG. When INSERT, another PLX primitive, is execuied, PLAYER.] is selected
and reinserted into the PEG, shown in Figure 24,

6. When control passes to FIRST-MOVE,

46

action,

GACKGMMON)

|

START “’(REST«DF-GAMD

GEMNSEQ

FIRST-MOVE := (TERMINAL PLAYER.-1 "MOVES")

is chosen, passed to, and exccuted. Since INSERT is in FIRST-MOVE’s access path, PLAYER.-1 (the
last player mentioned) evaluates to JOQE, producing the string “JOE MOVES" as the result of the
TERMINAL event. Figure 25, now the saine as the PEG given in Figure 5, shows the result of this

7. The program continues hy moving to REST-OF-GAME, where some action presumably takes
place, and concludes when the original BACKGAMMON event is crossed, leaving no unopened nodes.

THE PRODUCTION LANGUAGE - PLX

COMPARE

PLAYER. 1==—JOE GCLPLAYER.24—JOHN

(inse RT}-@RST-MOVD

ROLLDIE

QOLLDID (pLaver.1 = JOE)

GENMEM GENMEM

QIEVAL. Joom D QIEVAL. Jeom])

Figure 24. PEG after step 5

47

THE PRODUCTION LANGUAGE - PLX

1 BﬁEKGNﬂMDN)

START "‘-(RES T-OF-GAME)

COMPARE

PLAYER. 1=—JOE PLAYER. 2« JOHN

FIRST-MOVE

ROLLDIE ‘ ROLLDIE , @.AYER.I = JOD QERMINAL)

A

GENMEM) m C‘JOE MOVES"

y QDIEVAL. | 3) CDIEVAL.]-—D

Figure 25. PLG after step 6

3.6 SUMMARY

Using graphs or trees as a medium for describing various properties of programming
languages has been common in computer science research. For example, the Vienna Definition
Language tries to formalize a method for stating a programming language’s semantics by formulating
an execution tree and providing primitives for manipulating that tree [WEGNER 72]. Each language
construct is then defined in terms of these primitives and how they affect the execution tree, so that
any implementation of the language will have a precise foundation. The tree is their mechanism for

coordinating the entire formalism. Similarly, the PEG, by being the structure which defines a
process, is the coordinating formalism within XREP.

bl Meiiaaia ity auo b S B Y P v Ea e e e e b e] - L ——

§ ' THE PRODUCTION LANGUAGE - PLX

In this chapter the production language was described by picturing each construct in terms of
the PEG; the next chapter will study variables and access issues from the same viewpaint.

49

$. ACCESS PATH THEORY

4.1 INTRODUCTION

Access paths have been mentioned several times in preceding chapters, though they were
underplayed in importance. The access path concept deals specifically with the evaluation
environment presented to events, i.e., what data are available at any point during the execution of a
program. The fundamental position taken by this study, that decisions should be made
dynamically at execution time rather than statically at "compile” time, forces a thorough
understanding of the execution model offered by the PEG. In this chapter the creation of that rodel
will be analyzed from the standpoint of retrieving information from it, with the emphasis on the
correspondence between English methods and those availabie through XREP. Studying the
generation and retrieval of data permits the isolation of several problems which could occur in an
Automatic Programming problem acquisition phase. This chapter will uescribe the generality of
XREP’s methods and the flexibility of the PEG, while the next wili show how they can be used in
debugging certain errors.

An event’s access path was defined in Section 3.3 as the unigque ancestor chain of events and
nodes from it up to the root. Because it contains all the nonglobal data which may influence an
event’s behavior, the access path is the context of the current process, the structurz which contains
all relevant information. Proper Program organization can be evaluated through an access path goal:
an event should have access to no more or no less information than it needs to operate; and a
deviation in either direction is a structural flaw in the program.

This study of access paths is important to Automatic Programming because iuman dialogue
does not contain the explicit structuring found in formal programming languages, but implicit clues
are found within its addressing mechanisms. By simulating these methods XREP tries to mirror the
structure inherent in the original description. The definition and use of access paths in XREP enable
the freedom of English usage to be recenciled with the rigidity of a programming language.

42 NATURAL LANGUAGE ACCESS METHODS

Natural language has three basic data retrieval methods: the unique name of the desired
object is given, a pronomial reference is made, or the object is identified by type with some limiting

50

N T— ¥

1,

ACCESS PATH THEORY

predicate. In the first CAse, a proper name is usually associated with the object: John, Chicago, uses,
etc. In most cases thig name is unique, any attached modifier is considered nonrestrictive or
redundant and set off by commas as nonessential information. If necessary to the identfication, the
clause (now called restrictive and considered part of the noun phrase) is not enclosed in commas.
For example, in the statement, "USC, which won the Rose Bowl in 1975, is private," the clause "which
won the Rose Bowl in 1975" js nonrestrictive. However, if the statement becomes "the school which
won the Rose Bowl in 1975 s private," the same clause is neeessary to identify the subject, herce
restrictive. Since most inanimate objects do not have proper names, the restrictive clause is a major
retrieval mechanism and is the one with which XREP is concerned. A pronomial reference will later
be shown to be 1 special case of the restrictive clause situation,

The various reference forms used in English are not easily classified, due to their scope and
flexibility. Consider the following references:

L. The last player.

2. The first player.

3. The player who rolled ab.

4. John's die valye.

5. The player who rolled a die.

6. The die value rolled by the last player.

7. The last player before John,

8. The player who rol'ed the largest value.

The first two examples are common references made in situations where 2 particular type, in this
case player, has more than cne instantiation. Presumably the predicate, first or last, is needed
because a reference to "the piayer" would be ambiguous. The numeric character of this predicate
seems to be useful only in identifying end points of a type’s members. References like "the second,"
"the next to last," or “the third" are not unusual, but "the sixth” or "fourth from last" are, since the
possibility for error s greater for both the giver and receiver of the information. If someone had
presented an unnumbered list to me and asked for a comment on the sixth item, | suspect that |

would ask for confirmation of the item before commenting. Natural language does not often use
complex computations like counting to six for specifying an object.

An alternative to counting is to "home" i on the desireqd object by giving extra information
associated with the object. Examples 3 and 4 are of this type. In the former a player, the object of

the search, is restricted by having 5 for his die value. If several players had the same number, more
information would be necessary,

Example 4 is slightly different in that the die value is the object of interest. In both cases,
notice that no explicit linkage is given to help make the proper association. In other words, Johi’s

51

PR vy S Ty

o R . e LV NE T BT Rmm— ey

si
g

" A o o e R e L R T
T R T e—— et g g

ACCESS PATH THEORY

age could be requested in a context-free manner because all humans have an age, but not all humans
have die values. The veidity of "the iast player’s die value" depends on the environment of the
request and, if proper, 1. resolution will be based on some proximity measure rather than some
explicit rule. XREP’s PEG allows exactly these kinds of a.sociations to be made.

The »slayer in example 5 is identified by association with an event as opposed to an object -~

a situatiun hardly different from any of the preceding. However, notice that this form has no
counterpart in traditional programming languages.

Examples 6 and 7 typity the relalive types of addresses which replace the numeric kind. In
the former "the last die value” might have sufficed, but its form emphasizes the player involved. In
the latter counting wac presumably not feasible, so a new context, John, is named and objects are
referenced from this ne. focal point. This method is one of a class of naming mechanisms which is
more elaborate and more context-dependent than {hose found in computer languages.

The last example is the most difficult Hecause of the generality of the reference. It says to
select a player based on the result of some function applied to an object associated with players.
Many assumptions must be satisfied before such a request can be fulfilled: what is done if a player
has no die value, what if a player has two die values, what if the result is not unique? Again, this

request is nighly dependent on the context of the inquiry; each anomalous case must be treated
separately,

The examples giver cannot possibly be exhaustive, but are intended to represent typical

situations which arise in natural language. Each case will have an interpretation in XREP within the
facilities of the production language.

4.3 ACCESSING TYPED VARIABLES IN XREP

CGeneration Numbers

A typed variable is created in XREP through a GENMEM or GENSEQ event. The value of the
variable is assigned to the form

type.n+]

where n is the current generation number for this type in the event’s access path. The generation
number, defined in Section 3.3 as an integer which identifies the relative position of a variable,
serves rmore as a convenience for the discussions than as a fundamental tool of the formalism
because high generation numbers are not often used. As mentioned in the previous section,
accesses to a set of types probably use numeric expressions only at the end points -- for example,

52

ACCESS PATH THECRY

PLAYER.1, PLAYER.2, PLAYER.-1, PLAYER.-2 -- while accesses to the middle of

such a group most
probably name an intermediate targe! and then give relative specifications.

The scheme for assigning gencraticn numbers is simple: for GENMEM the current number is
incremented for a iype; for a GENSEQ the numbers are incremented across the driving type. The
assignment in a GENSZQ comes mcre from infuition and convenience than from a strong logical basis,
since each of the elements could be assigned the same number. Figure 26 shows the GENSEQ from
the BACKGAMMON garie. On the left i1s the actual structure: the PLAYERS are numbered | and 2
(according to the GENSEQ rule) witile each DIEVAL for the GENMEM is assigned 1, since each is the
only DIEVAL in its owr access path. The structure on the right of Figure 26 is also possible, since
each PLAYER is Iikewise the only one in cach corresponding access path.

GENSEQ GENSEQ

7O\ N\

PLAYER. 1 =— JOE PLAYER.2«#—JOHN PLAYER.1=—JOE PLAYER,1=—JOHN

! ' 1
GENMEM GENMEM GENMEM GENMEM
J ' l !
ROLLDIE ROLLDIE ROLLDIE ROLLDIE
Y l '
DIEVAL.1=-3 DIEVAL. 1= DIEVAL.1==-3 DIEVAL. le—]
Actual Access Graph Possible Access Graph

Figure 26. Generation number example

A more ambiguous situation cccurs in the Access Graph skeleton shown in Figure 27. What
should the last DIEVAL be numbered® A case could be made for 2, 3, or 4. A more complex
numbering scheme involving extra indexing is also possible, but since this situation is rare and since
XREP has many ways to access all the typed variables unambiguously without relying on the
particular numbering schema chosen, this probiem i1s one more of implementation than of substance.

As a result this and similar anomalous situations wili be downplayed; the emphasis will be placed on
the addressing methods.

53

ACCESS PATH THEORY

DIEVAL. 1
GENSEQ
PLAYER.1 PLAYER.2
| 1
DIEVAL.2 DIEVAL.?2

T

DIEVAL.?

Figure 27. An anomalous generation number situation

4.4 RELATIVE ADLRESSING

One of the claims made earlier in this report was that the language and the PEG
promoted a notion of spatiality for data items. That is, rather than merely a value, a variable also
has a referenceable location within the evaluation environment. To take advantage of this extension,
ways exist within the language of access: - data in a spatial manner.

The basic method is to refer to the variable type,

together with an identifying expression as
follows:

type.expression

The expression may be anything

that evaluates to an integer (other than zero), or it may be a
functional form, iNDEX or FIND.

INDEX will be described in the next subsection as a function which inspects GENSEQ structures.
FIND is a function which specifies a search for a type whose position is unknown. Its form is

54

P T

i

g Al

< Lol 8 S T I g e e B
e R W R R N e L - —_——
bl b T N L o i, et

ACCESS PATH THEORY
type.(FIND APl-expression)

For example, if a DIEVAL less than 5 s desired, the request is

DIEVAL(FIND (LT DIEVAL 5))

Other examples will be given later.

For the case in which “expression” of "type.expression” evaluates to an integer, the
addressing interpretation depends on its vaiue, If it is positive, that precise typed variable i1s looked
for in the appropriate context patn. This is a standard access, no different from traditional systems.
if it is negative, then a relative access s defired trom the point of this reference. For example, if
PLAYER.-1 is the reques', the value returned is the first PLAYER found in the search up the context
path, i.e., the last PLAY(UR generated or inserted into the PEG. Similarly, PLAYER.-2 would refer to
the second PLAYER in the search tp the tree (the next-to-last player generated or inserted).

References of the latter type give the systern its heterarchical flavor;
communicate in a nonnierarchical manner. Information is produced by a process and exposed to
whoever has rights to it. A hierarchy is imposed only mmphcitly by the structure of the PEG in

dealing with the scope of typed varables. This situation will allow us to reorganize programs with
certain faulty retrieval attempts.

different processes

The negative gencration number specifies an accecs relative to a reference point. Another
kind is possible where the desired data is referenced relative to other data. Its form is
x
type.exp FROM spec {FROM spec}

In other words, a valid reference is a ‘ype.exp followed by any numiber of "spec" separated by
FROM, where "sp

ec” is either 2n event nare or another type.exp. The list associates to the right.
Thus

DIEVAL.1 FROM PLAYER.-2 FROM ROLLDIE

is equivalent conceptually to

(DIEVAL.] FROM (PLAYER.-2 FROM ROLLDIE))

though 1o parentheses are allowed, since any other structuring will not make sense.

If a nonunique
event is named in the access, the cne "nearest” the current reference point is used.

When a typed variable which precedes a rROM has a positive generation number, it is located
by searching dowr the same access path of the current reference point. In the above example, once
PLAYER.-2 FROM ROLLDIE has been located, DIEVAL.l specifies a downward search for the first
DIEVAL encountered, not something naied DIEVAL.1. Notice that if a GENSEQ structure (or any
compound event) is passed in the "upward” search for PLAYER.-2 FROM ROLLDIE, the following
downward search for DIEVAL.! may be ambiguous, since each branch of the GENSEQ may contain a

DIEVAL. The ambiguity of the situation, explicit and graphic, is easy to relate back to the user as an
error,

55

ACCESS PATH THEQRY

To further emphasize how the FROM reference works, some hypothetical requests will be
evaluated in the context of the Access Graph skeleton shown in Figure 28. Each reference will be
given followed by an interpretation of its evaluation. Three items should first be reiterated:
negative generation numbers are raferences up the Access Graph, positive generation numbers are

references down the Access Graph, and no access strays oyl of the context path of the original
reference point. The examples follow.

1. DIEVAL.1
L= \
2. DIEVAL.2 EVENTX
|
3. MEM:ER.] PLAYER.1
5 4NN
4, PLAY'ER.] EVENTY MEMBER.]
5, DlEVYAL.? PLAYvER.Z
! '
6. PLAYER. 2 DIEVAL.2
|
7. MEMBER. 1
|
8. EVENTX
‘
9. PLAYER.3
|
10. EVENT

Figure 28. An Access Graph skeleton

e LR - o e,
o T— EEaiid S L —— J AR, SR

—
‘{.'ss\.«

e i
fece i Lo s

ACCESS PATH THEORY

Reference point: EVENT
Access request: PLAYER.-2 FROM MEMBER.-1

This reference is solved by locating MEMBER.-1, then finding PLAYER.-2 relative to it. MEMBER.-1 is
found by looking up froin EVENT for the nearest MEMBER, which happens to be MEMBER.] of line 7.
Using it as the new reference point, the new tarzet, PLAYER.-2, evaluates to the PLAYER.]1 of line 3.
Note that if the request nad heen for PLAYER.-2 trom EVENT, the result would have been PLAYER.2
in line 6.

Reference point: EVENT
Access request: DIEVAL.] FROM PLAYER.-2 FROM MEMBER.-1

This request is initially the same as the one above, with PLAYER.-2 from MEMBER.-]1 pointing us to
PLAYER.1 on line 3. DIEVAL.] t:oimn it means to now search down the access path for the first DIEVAL
found, in this instance to DIEVAL.2 of line 5. Notice that the context path of the original reference
point is not left, hence there is no ambiguity about downward searches.

Earlier it was mentioned that this string of FROM references associates from the right. 1t is
easy to see why, if you try to evaluate the above request from left to right.

Reference point: EVENT
Access request: PLAYER.] FROM EVENTX

In this request EVENTX in line & is located (not the one in line 2), with PLAYER.] from it resulting in
the PLAYER.3 of line 9.
Within this framework the example English references given in Section 4.2 can now be

translated.

1. The last player.
PLAYER.-1

2. The first player.
PLAYER.1

3. The player who rolled a 5.
PLAYER.-1 FROM DIEVAL(FINC (EQ DIEVAL 5))

4. John’s die value.
DIEVAL.1 FROM PLAYER.(FIND (EQ PLAYER JOHN))

5. The player who rolled a die.
PLAYER.-1 FROM ROLLDIE

6. The die value rolled by the last player.
DIEVAL.1 FROM PLAYER.-1

7. The last player before John.
PLAYER.-1 FROM PLAYER.FING (EQ PLAYER JOHN))

57

ACC:SS PATH THEQORY

The reference to "the player with the largest die value" will be examined in the next subsection.

Addressing a GENSE(Q

Thus far all the access questions have igrored the GENSEQ node. Since it represents a
structure of independent events, some mechanism raust acknowledge the coherent character of the
node. Basically, the GENSEQ can be thought of as being a set of contexts or symbol tables which
contain data. Thus a request from outside the GENSEQ (but in the same access path) may wish to

get a "pointer” to a branch (context) of the node in order to do some calculation. The INDEX function
accomplishes this task.

The cail to INDEX is -

maintype.(INDEX fuaction subtype SUbtype-deptH)
where "maintype” is the generator type of some GENSEQ, "function” is used to select a member of
the set "subtype,” "subtype" is some type which appears in each branch of the GENSEQ in question,

and "subtype-depth” gives the relative position of “subtype” to "maintype." The "subtype-depth"

defaults to one if it is not specified. It gives, as mentioned anove, a relative position. For example, if
it is 2, the located subtype satisfies

subtype.2 FROM maintype
for each GENSEQ branch.

In the BACKGAMMON program, the COMPARE rule was

COMPARE := (INSERT PLAYER(INDEX MAX DIEVAL)) -> FIRST-MOVE

- The "maintype” is PLAYER, the "function” is MAX, the "subtype” is DIEVAL, and "subtype-depth" is 1
since it was not specified. Notice that if each player rolled two die and the compa: ~on was to ‘ake
place on the second roll, the call would be
PLAYER.(INDEX MAX DIEVAL 2) j

In the COMPARE rule the segment PLAYER.(INDEX MAX DIEVAL) tries to get a pointer into the GENSEQ
node to the player with the largest die value. The result of this access must be unique; otherwise a
failure which leads to backup occurs. Most often INDEX will be used in conjunction with INSERT in *
order to provide a context-maintaining pointer for future references. The reinsertion of the found

type in the PEG is implemented as an indirect pointer back to the original binding. So once INS&:RT
has done its work, a reference like

DIEVAL.] FROM PLAYER.-1

will result in the largest DIEVAL (just found by the INDEX function).

o _— e - . Dbl e L AR

DIEVAL.-2 reference from EVENT be? This situat
be worthwhile;

The goal of the INDEX function is straightforward, but the complexity of its parameters is not.
The decision to make it work on a “subtype” via one “function” is arbitrary but not restrictive due to
the arbitrary power which can be programmed into “"function." In any case the situation is not
critical, since perspicuity (not to be underrated) and not capability is at stake.

A different design problem can be captured by viewing Figure 29. What should the result of a
ion is so obscure that the time spent on it may not
a case could be made for any of the first three. Most likely this particular graph will
never exist, and if it does a more specific access would probably be made. In Section 4.6 a
precise formulation of access paths will be given; this question will be answered then.

DIEVAL.1

J

i

GENSEQ

/\

DIEVAL.2 DIEVAL.3

N/

|

DIEVAL.4

EVENT

Figure 29. An Access Graph skeleton

THE NACCESS PATH PRORLEM

A study of algorithms meant for humans (rules for gamcs, directions for product use, etc.)
reveals that information tends to core in functional packets without regard for any structuring
issues. In trying to code such specifications for a computer, programmers iften produce a product
which reflecting diffuse structure, global variables, uncontrolied transfers, all items which Dijkstra

ACCESS PATH THEORY

59

SRl oD e e

ACCESS PATH THEQRY

deals with in his structured programming theory [DIJKSTRA 72]. His ideas present a unifying goal to
programming, but are not at all natural for humans, programmers included. Yet human specifications
do have structure, though much of it is implicit. The use of anaphoric and relative references,
ellipses, and sequential information provide clues that human dialogue and descriptions contain
structure, though perhaps not as formally as one of Dijkstra’s structured programs.

Consider the Auton.atic Programining task. Assuming that one of its goals is to find and
maintain the structure inherent in the natural language input, the access path problem is to organize
the fragmented problem statement so that during execution every process has access only to

relevant information while maintaining the appropriate tequence of actions. Given that goal, some
general issues can be discussed.

Heterarchy versus Hierarchy

Automatic Programming has found its way into the realm of Artificial Intelligence because of its
general problem-solvirg character. This brings with it all the teciiniques and design issues normally
feund in Artificial Intelligence, heuristics, search, represeniation, etc. Program organization, as a
representation problem, is one of these concerns.

A strict, pure hierarchy which defines a structured program may not be realistic or even
desirable as a target frr preliminary programs generated by Automatic Programming due to the
nonhierarchical nature of the human input. The heterarchical ideas, mentioned in Section 2.3, offers
the flexibility necessary in the initial translation attempt. In this framework control is diffuse,

processes are activated in a goal-oriented manner based on the state of the computation, while its
data "exists" and is found as needed.

CASAP [BALZER 73] tests these system ideas in a simple card playing environment. Its basic
feature comes from the interface between a routine and the data base. In CASAP a process

requests some information, with the interface trying to find it, thus centralizing the knowledge about
the data base.

Whether that much flexibility is needed is open to question. XREP takes a middle position
between the two extremes of hetcrarchy and hierarchy by offering a nonprocedural control flow,
yet addressing data access and scope issues.

Nonprocedural Control Flow in XREP

The control flow in XREP is determined by the production system character of PLX, organized
but not procedurally oriented. The segmented nature of production rules are like procedure or
subroutine calls but without a formal parameter-passing mechanism. This model has two purposes:
to provide a control which can be easily monitored and understood and at the same time to allow the

60

e b3

ACCESS PATH THEQRY

freedom and flexibility gained by giving up formal parameters.

These qualities do not, however,
come at the expense of requiring all data to be glcbal.

Access and Scope of Data

j— R T T L TR W N T = gy

By generating data and inserting it into the PEG, GE
evaluation environment typical of ALGOL-like languages.
capability. Instead, they operate out of a strict
well-documented flaws for prograrming
and a specific place within a process,

NMEM, GENSEQ, and INSERT create an
Most production systems do not have this
ly global data base, a mode which results in
systems(i). The access paths of the PEG give its data scope
teatures which will make PLX programs amenable to analysis.

Determining Aececess Paths

Since the PEG represents complete history of the process, dynamic bindings included, XREP

hias some basis for determining the proper structuring of the data. If the sequencing of the program
is correct, organizing the access paths is a realistic and desirable goal. The information is there; the
system needs only to find and organize it. Chapter 5 will discuss the problem in more detail.

The access path is the fundamental concept behind most of the debugging efforts of XREP.
Thus far only the Access Graph has been given for viewing acc

ess paths. The nexi section will give
the formal methods of determining them.

4.6 COMPUTING NCCESS PATIIS ‘
In the definition of an access path, both events and nodes were mentioned in order to
emphasize their difference. A node, defined as the execution of a compound event, has a simple 3
interpretation when calculating access paths in the PEG and only a slightly more complicated one 4
when viewing the Access Graph. E
The Access Graph in Figure 30 is the same as that of Figure 4 except that the compound :
events are boxed in dotted lines. To find an access path for an event, move up the tree, include :
whatever is found without "entering” nodes (i.e., they are to be treated as entities). Thus the access 3
path for INSERT is]
COMPARE, GENSEQ-NODE, START, BACKGAMMON i
i

(i) See [WULF 73] for a discussion of this topic.
61 *
2
|

2 W TTAPERY CRTUT PRI Oy IRV] I APCI y, R i 3 gt
. - ik N I g S L NPT SINDT L ET ron) B rr O 11 [pna) g

et d b b b S e
ghii i " Lambl. iy =

ACCESS PATH THEORY

while the path for the second GENMEM is

ROLLDIE, PLAYER.2<-JOHN, GENSEQ, START, BACKGAMMON
Treated in this node format there is N0 ambiguity in calculating access paths because every event \
has a unique ancestor; the “joins” in the Access Graph accur only within nodes, which are masked :
1 when viewed from outside the node. ‘
5 1
§
BACKGAMMON j
;' START REST-OF-GAME
) i
, frosnEERESS.—" """'"""""'"""", | :
i GENSEQ | ' i
i b
! PLAYER, 1= JOE PLAYER. 2 = JOHN .
i / |
- ROLLDIE ROLLDIE
i
]
I r """" '*' """ I Fre——"— J‘ ““““
i+ GENMEM | i GENME'A |
P | : :
o ' N
| | DIEVAL, =3 | | DIEVAL,1==1 |
: | i ! e O 1
|
i
]
i

o

______________________ e

COMPARE

S L Al Al S i s g o el

FIRST-MOVE

Figure 30. An Access Graph in node format

62

E ACCESS PATH THEORY

This situation is simpler when considering the PEG The access path of an event is determined

by moving left or up (when no left link exists), with all events included except those which are
protected (rectangular) and reached by a lefl link. In Figure 5 (repeated for convenience) the access
path for INSERT is

COMPARE, GENSEQ, START, BACKGAMMON

QACKGAMMON)

START REST-OF-GAME

T~

GENSEQ

COMPARE

PLAYER. 1= JOE PLAYER. 2=~ JOHN FIRST-MOVE

m Qouo@ PLAYER.1 = JOE) (TERMINAD

4
1,

(GENMEM ("s0 MOVE@

@IEVAL. "‘D QIEVAL. Jem— l)

Figure 5. A Process Elahoration Graph (PEG) 2

63

aall T T

ACCESS PATH THEORY

START, though protected, is included because it wa

s reached by an up link, not a left one. Similarly,
the second GENMEM visits

ROLLDIE, PLAYER.2<-JOHN, PLAYER.]1<-JQE,
GENSEQ, START, BACKGAMMON

but PLAYER.1<-JOE is removed, since it is

protected and was reached by a left link, leaving

ROLLOIE, PLAYER.2<-JOHN, GENSEQ, START, BACKGAMMON

as its access path as before. The boxin
by never moving "down" in tracin
compound event.

g operation done to the Access Graph is reflected in the PEG
g access paths since the down link represents the execution of the

Still, once in an event's access path, a
For example, the INDEX
Section 4.3 concerning
proper conditions.

node may be inspected under the proper conditions.
function was designed for just that purpose. However, the question raised in
a PLAYER.-2 request to the graph in Figure 29 forces the definition of those

The decision, arbitrary in scre sense, was to allow any descendant of a compound evernt
access to its information. it only remained to decide how to "linearize" a compound event for

inclusion in the access path, The logical choice is to consider the node in reverse time sequence.
For the GENSEQ node in Figure 30, that sequence is

DIEVAL.1<-], GENMEM, ROLLDIE, PLAYER.2<-JOHN,
DIEVAL.1<-3, GENMEM, ROLLDIE, PLAYER.1<-JOE

The algorithm for this process is
LINEARIZE (NODE)
1. If NODE is NIL then return.

2. LINEARIZE each son of NODE, rightmost son first.

3. Print NODE

When a node has no sons, then the recursive call in line 2 will be LINEARIZE (ML) hence the test in
line 1.

64

bl
el e o b e i e B i

o

ACCESS PATH THEQRY

In an ALGCLized version nf LISP, the algorithm is

(LINEARIZE
[LAMBDA (NODE)
(1f NODE=NIL

then NIL

else if NODE:RIGHT-LINK EXISTS
then (APPEND (LINEARIZE NODE:RIGHT-LINK)

(APPEND (LINEARIZE NODE:DOWN-LINK)
(LIST NODE)))
else (APPEND (LINEARIZE NCDE:DOWN-LINK (LIST NODE])

Without going into a great deal of LISP detail, the second "if" clause generates a list of events by
moving across a level of the PEG. The order of the APPENDs produces this list in reverse order,
first the NODE’s nght-link, then the NODE's gown-link, and finally the node itse!f. The recursion, of

COurse, takes care of embedded nodes, while the last "else" clause handles the last-son condition.

With LINEARIZE defined, a complete acces

(ACCESS-PATH
[LAMBDA (NODE)
(if NODE=ROOT
then NiL
else if NODE:LZFT-LINK EXISTS
\ then (APPEND (EVALUATE NODF:LEFT-LINK)
i (ACCESS-PATH NODZ:LEFT-LINK))
else (CONS NODE:UP-LINK (ACCESS-PATH NODE:UP-LINK])

s path algorithm can be given,

The simplc function EVALUATE is defined to be

- (EVALUATE
[LAMBDA (NODE)
(if NODE is PROTECTED
then NIL
else (LINEARIZE NODE))

It merely eliminates protected rodes reached by a left-link.

65

ACCESS PATH THEQRY

Notice that the last “else” of ACCESS-PATH ciause handled the up-link case. In this situation,

the event is added (accomphshed by LISP's CONS) to the list only, not operated on by LINEARIZE.
Applying ACCESS-PATH to INSERT gives

COMPARE, LINEARIZE (GENSEQ), START, BACKGAMM".y

as desired, while applying it to the second GENMEM produces the same result as before.

47 TIE PEG AND GTHER EXECUTION MODELS

The semantics of a program executing within XREP are captured by the PEG in depicting all
the control and access 1ssues. From this standpoint XREP's execution is similar to that found in any

language which operates out of a stack, like LISP or A! GOL. But the role intended for the PEG is
more diversified.

In describi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>